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Abstract

In this thesis, we study bosons in a F = 1 hyperfine state trapped in a square opti-
cal lattice. Such a system can accurately be described by the spin-1 Bose-Hubbard
model. We give a mean-field description of that model for both ferromagnetic and an-
tiferromagnetic interactions at zero and finite temperature. As opposed to the spinless
system, we find first order Mott insulator to superfluid transitions in certain parameter
regimes.

Furthermore, we perform a Quantum Monte Carlo simulation of what we call the
trilayer system, which can be viewed as an approximation to the full spin-1 Bose-
Hubbard model, excluding off-diagonal spin flip terms. Our results show first order
Mott to superfluid transitions over wide parameter ranges, which always come along
with sudden transitions in spin space. Moreover we see that such spin transitions
may be shifted to a considerably different quantum critical point compared to the
insulator to superfluid transition by regulating the spin interaction strength. Finally,
we compute the ground state phase boundaries of the first Mott lobe both for one
specific ferromagnetic and antiferromagnetic interaction.
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CHAPTER 1

INTRODUCTION

About twenty years ago, the experimental realization of Bose-Einstein condensates
[1, 2] in ultracold atomic gases opened the door to numerous new quantum many-
body experiments. For instance, the creation of optical lattice potentials [3] and its
filling with a dilute gas of cold bosonic atoms [4] allowed the investigation of a quan-
tum phase transition [5] from a Mott-insulating to a superfluid state [6] by modifi-
cation of the inter-particle interaction strength via Feshbach resonances [7]. Such
a system can in very good approximation be described by the Bose-Hubbard model
[8]. To keep the cloud of atoms together experimentally, magnetic traps are often the
method of choice. The Zeeman splitting of atomic energy levels due to the inhomoge-
neous external magnetic field then leads to an effective potential that is only capable
to confine atoms in a single hyperfine state. That means that atoms of total angular
momentum ~̂F = ~̂I + ~̂L + ~̂S , where ~̂I is the nuclear spin and ~̂L and ~̂S are the electronic
orbital and spin angular momenta, are usually trapped in the so-called ’weak-field
seeking’ state, which is given by a frozen hyperfine state |F,mF〉.

However, the invention of purely optical traps [9] allowed for experiments where
the atomic spin state is a further degree of freedom. Without any external magnetic
field, each ground state is 2F + 1-fold degenerate in the magnetic quantum number
mF = −F, . . . , F. Thus, the corresponding bosonic quantum field operator Ψ̂ ac-
quires an additional index, Ψ̂mF and the related mean field order parameter becomes
a vector [10] where each entry is associated to a hyperfine state mF . Furthermore,
inter-particle interactions may now depend on the exact hyperfine states of the two
scattering particles.

Using the alkaline atoms 23Na and 87Rb, which have a nuclear spin of I = 3/2 and



1 Introduction

a single electron in an s−orbital, one can prepare atoms in a F = 1 state. Such atoms
are referred to as ’spin-1 bosons’ in the following and their behavior in optical lattice
potentials is the topic of this work.

We start with a short introduction to optical lattice potentials and motivate the usage
of the spin-1 Bose-Hubbard Hamiltonian to describe F = 1 bosons in such potentials
in the first section. Just after giving an overview of the phases that the spin-1 Bose-
Hubbard model exhibits, we show how critical points of second order quantum phase
transitions can be obtained via finite-size scaling.

Next, we have a look at our model in the limit of strong interactions, where the
Hamiltonian is diagonal and therefore trivially analytically solvable. We then provide
a mean-field solution both for the full spin-1 Bose-Hubbard model and the so-called
trilayer model, which can be seen as an approximation to the original system.

The next section gives a self-contained introduction to path-integral Monte Carlo
simulations and the worm algorithm [11, 12], which is the algorithm we used for a
Monte-Carlo study of the trilayer system. We close this section with a description of
two new kinds of update schemes which were invented in the course of this thesis.
We then present our Monte-Carlo results and terminate this work with a discussion
of the obtained data. As an outline, we give a theoretical description of a further
Monte Carlo scheme including two open worm configurations, which should solve
the challenges we had to struggle with in our simulations and thus allows for an
efficient simulation of the full spin-1 Bose-Hubbard model.
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CHAPTER 2

THEORY

2.1 The Bose-Hubbard model

In the following section, we first give a short background to optical lattice potentials
and then derive a Hamiltonian for bosonic atoms in such potentials, which in very
good approximation is given by the Bose-Hubbard model. We then deduce an addi-
tional interaction term for spin-1 bosons and close the section with an overview of
the phases a spin-1 Bose-Hubbard model exhibits.

2.1.1 Optical lattices

One can think of an optical lattice as an artificial crystal created by the electric field
~E(~r, t) of two counter-propagating laser beams [13]. Far off resonance, the laser light
of frequency ωL induces an atomic dipole moment ~d like [14]

~d = α(ωL)~E, (2.1)

where α(ωL) is the atomic polarizability. This leads to the AC-Stark effect, which is
covered by the Hamiltonian

Ĥint = −~d · ~E, (2.2)



2 Theory

which can be treated perturbatively. A straightforward calculation gives the corre-
sponding shift in energy ∆E(~r) as

∆E(~r) = −
1
2
α(ωL)〈~E2(~r, t)〉t, (2.3)

where 〈.〉t indicates a time average over one oscillation of the electric field. Usually,
one excited state Ee = h̄ωe is much closer to resonance than all the others. In that
case, the atomic polarizability becomes inversely proportional to the laser detuning
∆ = ωL − (ωe − ωg), with ωg the ground state frequency. The energy shift (2.3) may
be seen as an effective potential Vopt(~r) = ∆E(~r), due to which atoms feel the force

~Fdipole = −~∇Vopt(~r). (2.4)

Hence, red-detuned lasers with ∆ < 0 attract the atoms towards regions of high inten-
sity I(~r, t) ∝ ~E2(~r, t), while blue-detuned lasers with ∆ > 0 pull the particles towards
regions of low intensity [13].

The simplest case of a one-dimensional optical lattice is given by the superposi-
tion of the electric fields of two counterpropagating laser beams of same frequency
linearly polarized in z-direction, which leads to the potential

Vopt(x) = −
1
2
α(ωL)E0 cos2(kxx), (2.5)

where E0 is the amplitude of the electric laser field and kx the wave number of the
laser beam in x-direction. This can directly be generalized to higher-dimensional
cubic lattices.

At sufficiently low temperatures, inter-atomic interactions of spinless bosons are
completely determined by s-wave scattering where the scattering length is given by

a =
m

4πh̄2

∫
V(~r)d3r, (2.6)

with the atomic mass m and the interaction potential V(~r) of particles separated by
the distance ~r. This potential can usually be approximated by the contact potential

V(~r) = gδ3(~r), (2.7)

so we can write

g =
4πh̄2a

m
. (2.8)

10



2.1 The Bose-Hubbard model

In practice, the scattering length a and thus the interaction strength can relatively easy
be tuned using Feshbach resonances, see e.g. [7, 15].

2.1.2 The Bose-Hubbard Hamiltonian: Emergence from optical

lattice potentials

Bosonic atoms trapped by an external potential are described by the Hamiltonian [4]

Ĥ =

∫
d3rΨ̂†(~r)

(
−

h̄2

2m
~∇2 + Vext(~r) +

g
2

Ψ̂†(~r)Ψ̂(~r) − µ
)
Ψ̂(~r), (2.9)

where Ψ̂†(~r) and Ψ̂(~r) are bosonic field creation and annihilation operators at point ~r
that fulfill the usual canonical commutation relations[

Ψ(~r),Ψ†(~r′)
]

= δ3(~r − ~r′),[
Ψ(~r),Ψ(~r′)

]
=

[
Ψ†(~r),Ψ†(~r′)

]
= 0. (2.10)

Inter-atomic interactions are approximated by the contact potential (2.7), and the ex-
ternal potential Vext(~r) is given by Vext(~r) = Vopt(~r) + Vtrap(~r), where Vopt(~r) is the
potential of optical lattice and Vtrap(~r) an additional potential used to trap the cloud of
cold atoms in a confined region. The parameter µ is the chemical potential that fixes
the mean total particle number 〈N̂〉 in the grand canonical ensemble.

The field operators Ψ̂(~r), Ψ̂†(~r) may be expanded in the basis of single particle wave
functions Φk(~r) as

Ψ̂(~r) =
∑

k

Φk(~r)b̂k,

Ψ̂†(~r) =
∑

k

Φ∗k(~r)b̂†k , (2.11)

where the index k runs over the complete set of single particle quantum numbers
and the operators b̂†k , b̂k create and annihilate a particle in the corresponding mode,
respectively. It is well known that in a periodic potential, the single particle wave
functions are Bloch waves Φn~q(~r) with quasi-momentum ~q and band index n. As
Bloch waves are only multiplied by a phase factor ei~q·~R due to translation by a lattice
vector ~R, they extend over the whole lattice. This is rather unpractical, since we are
looking for a description of particles hopping around discrete lattice sites ~R. Hence,

11



2 Theory

we switch to the basis of Wannier functions, which is given by

wn(~r) =
1
√

Ns

∑
~q

e−i~q·~rΦn~q(~r), (2.12)

with Ns the total number of lattice sites. We now may rewrite the field operators as

Ψ̂(~r) =
∑
n,i

wn(~r − ~Ri)b̂n,i, Ψ̂†(~r) =
∑
n,i

w∗n(~r − ~Ri)b̂
†

n,i, (2.13)

where the index i labels the lattice sites of the system. The Wannier functions wn(~r −
~Ri) are well localized around the lattice site i and vanish quickly for increasing

∣∣∣∣~r − ~Ri

∣∣∣∣.
For low temperatures, particles do not have enough energy to go to higher energy

bands. We thus are confined to the lowest Bloch band and may drop the band index n

for convenience.

The Hamiltonian (2.9) then becomes [13]

Ĥ = −
∑

i, j

ti jb̂
†

i b̂ j +
∑
i, j,k,l

Ui jkl

2
b̂†i b̂†j b̂kb̂l −

∑
i, j

µi jb̂
†

i b̂ j, (2.14)

with

ti j = −

∫
d3rw∗(~r − ~Ri)

(
−

h̄2

2m
~∇2 + Vopt(~r)

)
w(~r − ~R j), (2.15)

Ui jkl = g
∫

d3rw∗(~r − ~Ri)w∗(~r − ~R j)w∗(~r − ~Rk)w∗(~r − ~Rl), (2.16)

and

µi j =

∫
d3rw∗(~r − ~Ri)µw(~r − ~R j). (2.17)

In the kinetic term (2.15), the dominant contributions come from the diagonal ele-
ments tii and nearest neighboring sites t〈i, j〉. Next to nearest neighbor hopping is about
two orders of magnitude smaller [16] and can be neglected. The diagonal elements
tii lead to a constant shift in energy for each site and can therefore be dropped. Fur-
thermore, we only consider isotropic hopping, where t〈i, j〉 = t for all sites. Since the
Wannier functions are well localized, the relevant contribution to the on-site repulsion
is U0 = Uiiii. Nearest neighbor repulsion is one order of magnitude smaller [16] and
is neglected, just like for the chemical potential, where we only consider µ = µii.

12



2.1 The Bose-Hubbard model

With all these approximations, the Hamiltonian (2.9) may be rewritten as

Ĥ = −t
∑
〈i, j〉

b̂†i b̂ j +
U0

2

∑
i

n̂i(n̂i − 1) − µ
∑

i

n̂i, (2.18)

which is the famous Bose-Hubbard Hamiltonian, where n̂i = b̂†i b̂i is the occupation
number operator of particles on site i.

2.1.3 Spin interaction term for spin-1 bosons

As for spinful particles, the scattering length a = aS generally depends on the total
hyperfine spin state S of the pair of interacting particles, we cannot use the interaction
potential (2.7) anymore. Instead, the general contact potential of two spin F bosons
has the form [10, 17, 18]

V(~r) = δ3(~r)
2F∑

S =0,2...

gSPS , (2.19)

where gS = 4πh̄2aS
m and PS is the projection operator on the total hyperfine spin state

S . Using the operator identities∑
S

PS = 1 (2.20)

and

~F1 · ~F2 =
∑

S

λSPS , (2.21)

where λS = 1
2 [S (S + 1)−2F(F + 1)] and ~F in the case of spin-1 particles is the vector

of spin-1 matrices,

Fx =
1
√

2


0 1 0
1 0 1
0 1 0

 , Fy =
1
√

2


0 −i 0
i 0 −i

0 i 0

 , Fz =


1 0 0
0 0 0
0 0 −1

 , (2.22)

we get

V(~r) =
(
c0 + c2 ~F1 ~F2

)
δ3(~r), (2.23)

13
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where c0 = (g0 + 2g2)/3 and c2 = (g2 − g0)/3. Hence, the inter-particle interaction
term Ĥint of the Hamiltonian reads

Ĥint =

∫
d3r

(c0

2
Ψ̂†m(~r)Ψ̂†j(~r)Ψ̂ j(~r)Ψ̂m(~r) +

c2

2
Ψ̂†m(~r)(Fν)m jΨ̂ j(~r)Ψ̂†l (~r)(Fν)lkΨ̂k(~r)

)
,

(2.24)

where summation over repeated indices is implicit and Ψ̂
†
m(~r), Ψ̂m(~r) are creation and

annihilation operators for a boson in the Zeeman state |F = 1,mF = m = −1, 0, 1〉.
(Fν)m j denotes the m j−th component of the ν = x, y, z spin-1 matrix.

An analogous procedure as for scalar bosons leads to the Bose-Hubbard Hamilto-
nian for spin-1 particles [19]

Ĥ = − t
∑
〈i, j〉,σ

(
b̂†i,σb̂ j,σ + b̂†j,σb̂i,σ

)
+

U0

2

∑
i

n̂i(n̂i − 1)

− µ
∑

i

n̂i +
U2

2

∑
i

(
~̂F2

i − 2n̂i

)
, (2.25)

where ~̂Fi is the total spin operator at site i,

~̂Fi =
∑
σ,σ′

b̂†i,σ ~Fσσ′ b̂i,σ′ . (2.26)

Making use of the spin-1 matrices given in (2.22), one can expand this as

~̂F2
i =n̂2

i,+ − 2n̂i,+n̂i,− + n̂2
i,− + n̂i,+ + n̂i,− + 2n̂i,0 + 2n̂i,0n̂i,+ + 2n̂i,0n̂i,−

+ 2b̂†i,+b̂†i,−b̂i,0b̂i,0 + 2b̂†i,0b̂†i,0b̂i,+b̂i,−, (2.27)

where n̂i,σ = b̂†i,σb̂i,σ denotes the particle number operator of particles of magnetic
quantum number mF = σ on site i.

2.1.3.1 The trilayer system

As our Monte-Carlo simulation is based on the so-called worm algorithm [11, 12]
with a single mobile worm, it is not possible to simulate off-diagonal terms com-
posed of more than one pair of creation and annihilation operators. In particular, the
algorithm we use, see section 2.4.5), is not capable to simulate the spin-flip terms
b̂†i,+b̂†i,−b̂i,0b̂i,0 + b̂†i,0b̂†i,0b̂i,+b̂i,− occuring in the ~̂F2

i term in (2.25). We thus ignored these
terms in our QMC code and simulated what we henceforth call the trilayer system,

14



2.1 The Bose-Hubbard model

defined by the Hamiltonian

Ĥ = − t
∑
〈i, j〉,σ

(
b̂†i,σb̂ j,σ + b̂†j,σb̂i,σ

)
+

U0

2

∑
i

n̂i(n̂i − 1) − µ
∑

i

n̂i

+
U2

2

∑
i

n̂2
i+ − 2n̂i+n̂i− + n̂2

i− − n̂i+ − n̂i− + 2n̂i0n̂i+ + 2n̂i0n̂i−︸                                                           ︷︷                                                           ︸
= ~̃F2

i −2n̂i

. (2.28)

Similarly, the algorithm is not able to sample several observables of the spin-1 Bose-
Hubbard model such as the nematic order traceless tensor [19]

Qab = 〈F̂aF̂b〉 −
δab

3
〈
~̂F2〉, (2.29)

the singlet density ρsg (see section 2.3.2.1), and the local magnetic moment given in
(2.27). The reason for that is, in order to estimate the expectation value of terms like
〈b̂†i,σ1

b̂†i,σ2
b̂i,σ3 b̂i,σ4〉 as they appear in these observables, we need to sample the cor-

responding Green function G (iσ1, iσ2, iσ3, iσ4), which cannot be done by a single
worm that propagates in only one spin layer σ (cf. section 2.4.5) at a time. Never-
theless, we give the theoretical framework of an algorithm with two simultaneously
propagating worms in the outlook of this work in section 4.2, which is able to sim-
ulate the spin-flip terms and to sample the four-point Green’s functions we need for
the estimation of the observables mentioned above.

However, to keep track of changes in spin configuration, we can define what we
call the approximated local magnetic moment

~̂F2
i = n̂2

i+ − 2n̂i+n̂i− + n̂2
i− + n̂i+ + n̂i− + 2n̂i0 + 2n̂i0n̂i+ + 2n̂i0n̂i−, (2.30)

which is the same as the one given in equation (2.27), except for omission of the
nondiagonal spin-flip terms. Confusion may arise because we are using the same
symbol ~̂F2

i both in equations (2.27) and (2.30): the general rule is that in the Monte-
Carlo part, we are talking about the quantity defined in the latter equation, whereas in
the whole rest of this work (unless otherwise specified), we use the former definition
of ~̂F2

i .

2.1.4 Phases of the spin-1 Bose-Hubbard model

Firstly, let us consider the ordinary Bose-Hubbard model without spin-dependent in-
teractions, given by the Hamiltonian (2.18). Depending on the ratio of the hopping
parameter t relative to the on-site repulsion U0, the Bose-Hubbard model exhibits two

15
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distinct phases in the limit of zero temperature.

One of these phases is the superfluid phase, which is obtained in the limit of
t/U0 → ∞. In that regime, the particles are fully delocalized and the many-body
wave function of N atoms on a lattice of NL sites is given by the product state [20]

|Ψsf〉 ∝

 NL∑
i=1

b̂†i

N

|0〉 . (2.31)

Such a state has a long-range order phase coherence throughout the whole lattice,
which is why it can be considered as superfluid.

The site occupation number ni is Poisson distributed [15], so Var(ni) = 〈n̂i〉, which
means that there are rather high particle number fluctuations on each lattice site. For
increasing interactions U0, these fluctuations become energetically more and more
costly. In the limit strong interactions t/U0 → 0, the ground state of the system will
be composed of localized wave functions with a fixed site occupation number, so that
the interaction energy is minimized.

The emerging phase is a Mott insulator. The Mott insulator is characterized by a
gapped energy spectrum and by a vanishing compressibility κ =

∂ρ

∂µ
= 0. In the Mott

limit t/U0 → 0, the ground state is given by the Fock state

|ΨMott〉 ∝

 NL∏
i=1

b̂†i

ρ |0〉 , (2.32)

where ρ equals the constant particle density.

As opposed to |ΨMott〉, the superfluid state |Ψsf〉 shows off-diagonal long-range or-
der, which cannot vanish continuously in the thermodynamic limit [15]. Hence a
sharp quantum phase transition has to occur at some critical value

(
t

U0

)
c

in the ther-
modynamic limit.

Both superfluid and Mott insulating phases also occur in the spin-1 Bose-Hubbard
model. Moreover, the spin degree of freedom further enriches the phase diagram.
For the antiferromagnetic case where U2 > 0, it was first shown in [21] that in two
and three dimensions the system exhibits spin singlet and nematic phases, see figure
2.1. A spin singlet phase can occur in Mott lobes with even particle density ρ. It is
characterized by the formation of singlet pairs with vanishing total on-site spin F = 0.
For a site with ni = 2 particles, such a state reads∣∣∣Ψsinglet

〉
=

∣∣∣Fi = 0,mF,i = 0, ni = 2
〉
, (2.33)

16



2.1 The Bose-Hubbard model

Figure 2.1: Schematic phase diagram for F = 1 bosons in two- and three-dimensional
optical lattices with antiferromagnetic interaction U2 > 0. In [19], first
order transitions of spin singlet to nematic states are predicted for Mott
lobes with even filling. In the picture, tc marks the critical point of the
spin transition, whereas t− and t+ limit the region of metastability. Picture
taken from [19].

which can be written in spin occupation number basis as

∣∣∣Ψsinglet

〉
=

1
√

6
(2 |ni+ = 1, ni0 = 0, ni− = 1〉 − |ni+ = 0, ni0 = 2, ni− = 0〉) . (2.34)

On the other hand, the nematic state is defined by the broken rotational O(3) spin
symmetry. So along with the local magnetic moment 〈 ~̂F2〉, the nematic order tensor
Q given in equation (2.29) can be used as an order parameter for spin singlet to
nematic transitions. In nematic phases, the diagonal elements of the nematic tensor
Qaa assume nonzero values, whereas they vanish in the spin singlet phase.

For ferromagnetic interactions U2 < 0, Monte Carlo studies have shown [22] that
the particles exhibit ferromagnetic order throughout the whole phase diagram, so that
〈
~̂F2

i 〉 = 〈n̂i(n̂i + 1)〉.

As expected, also the trilayer system we simulated in this work shows the common
Mott and superfluid phases. In the ferromagnetic regime, we also see the maximiza-
tion of 〈 ~̂F2

i 〉 throughout the whole phase diagram. However, we observe first order
phase transitions in both the ferromagnetic and antiferromagnetic cases for various
parameter regimes which do not occur in the full spin-1 model. Such transitions
always go along with a change of spin configuration, see chapter 3.
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2.2 Phase transitions

In this section, we explain the classification of phase transitions into first and second
order and reveal the differences between classical, temperature driven phase transi-
tions and quantum phase transitions. After that, we will see how general scaling
properties at the quantum critical point can be used to determine phase boundaries in
the thermodynamic limit via finite-size scaling.

2.2.1 Classical phase transitions

Generically, phase transitions are characterized by a sudden, discontinuous change in
the properties of a physical system. Classical, temperature driven phase transitions
can be classified to be either first or second order. This classification originally goes
back to Ehrenfest [23] and uses the behavior of the derivatives of free energy F as
the decision-making criterion.

If the first derivatives of F are discontinuous at the critical temperature Tc, the
transition is named first order. First order transitions generally involve latent heat
as well as phase coexistence at the transition temperature Tc [24], which incorporates
local minima both for vanishing and non-vanishing order parameter in the free energy
landscape [25].

For second order phase transitions, discontinuities occur in second or higher order
derivatives of free energy F . Usually, there exists an order parameter which is zero in
one phase (the disordered phase), whereas it assumes a finite expectation value in the
other (the ordered phase). Approaching the critical temperature Tc, the typical length
scale, the equal-time correlation length ξ, diverges as

ξ ∝ ε−ν, (2.35)

where ε = |T − Tc| /T is the reduced distance to the transition point Tc and ν is
the correlation length critical exponent. Analogous to the correlation length ξ, the
correlation time τc, which is the characteristic fluctuation decay time scale, diverges
as

τc ∝ ε
−νz ∝ ξz, (2.36)

with the dynamical critical exponent z. Close to Tc, there are no other characteristic
length and time scales as ξ and τc [26]. Hence, the physical properties must stay the
same if we multiply all lengths in the system by a common factor a and simultane-
ously adjust all parameters such that the correlation length ξ stays constant. From
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2.2 Phase transitions

this we can infer the homogeneity condition of the singular part fs of the free energy
density close to a classical phase transition,

fs(ε) = a−d fs(a1/νε). (2.37)

This homogeneity relation gives rise to a set of simple power laws describing the
behavior of physical quantities near criticality, see e.g. [27]. They generally are
similar to equation (2.35) and have the form

Q ∝ εζ , (2.38)

where we call ζ the critical exponent of the quantity Q. Notably, one can classify
second order phase transitions in so-called universality classes, in the sense that tran-
sitions of the same universality class share exact the same set of critical exponents.

2.2.2 Quantum phase transitions

So far we only considered classical phase transitions driven by thermal fluctuations.
Let us see what happens if at low temperatures, the thermal energy kBT reaches the
energy scaleh̄ωc of quantum fluctuations near criticality. As we have seen in equation
(2.36), the typical time scale τc diverges at the transition, hence the typical frequency
ωc and the corresponding energy scale h̄ωc vanish as

h̄ωc ∝ ε
νz. (2.39)

Thus we can conclude that for finite temperatures,

h̄ωc � kBTc, (2.40)

so that any phase transition with critical temperature Tc > 0 can be considered as
purely classical [24].

However, if phase transitions happen at zero temperature due to the variation of
any control parameter r other than temperature, such as, for example, the chemical
potential µ or the on-site repulsion U0 in the Bose-Hubbard model, they are always
driven by quantum fluctuations, hence the name quantum phase transition [5].

As will be described in section 2.4.4.1, we can map a d-dimensional quantum sys-
tem to a d + 1 dimensional classical one by the introduction of an imaginary time
direction τ = β = 1/kBT . The homogeneity relation of the singular part of free
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energy equation (2.37) then reads

fs(ε) = a−(d+z) fs(a1/νε), (2.41)

where z is again the dynamical critical exponent, describing the relative scaling of
space and time dimensions. If we choose the scaling factor a to be ε−1/ν, we can infer
that

fs(ε) ∝ εν(d+z). (2.42)

2.2.2.1 Critical behavior of the superfluid density ρs f and the

compressibility κ

First of all, let us give a proper definition of the superfluid density ρs f . In a Bose-
Einstein condensate (BEC) [28], a large number of particles N0 are condensed in
the ground state of the system. This justifies the application of the Bogoliubov ap-
proximation, which is the replacement of the ground state field operator Φ̂0(~r, t) by
a complex number Φ0(~r, t) (see e.g. [29]). The condensate particle density is then
given by

n(~r, t) = 〈Φ̂
†

0(~r, t)Φ̂0(~r, t)〉 =
∣∣∣Φ0(~r, t)

∣∣∣2 , (2.43)

which has to fulfill the continuity equation

d
dt

n(~r, t) = −~∇ · ~j(~r, t) (2.44)

with the particle current density

~j(~r, t) = −
ih̄

2m

(
Φ∗0(~r, t)~∇Φ0(~r, t) − Φ0(~r, t)~∇Φ∗0(~r, t)

)
. (2.45)

Writing down the c-number field Φ0 in terms of its amplitude and phase,

Φ0(~r, t) =
√

n(~r, t)eiφ(~r,t), (2.46)

the particle current density may be rewritten as

~j(~r, t) = n(~r, t)
h̄
m
~∇φ(~r, t). (2.47)
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2.2 Phase transitions

This suggests the definition of the superfluid velocity ~vs as

~vs =
h̄
m
~∇φ(~r, t), (2.48)

whilst the increment ∆ f in free energy density due to the superfluid is given by the
kinetic energy [30]

∆ f =
1
2
ρs f v2

s , (2.49)

which is what we use as the defining equation for the superfluid density ρs f .

In a finite-size system, which is what we are always dealing with in Monte Carlo
simulations, superfluidity is induced by picking up a twist ∆φ of phase φ going one
time around the system with linear size L [31], i.e.

Φ0(. . . , x j = 0, . . .) = ei∆φΦ0(. . . , x j = L, . . .), (2.50)

where x j is the x-coordinate of the j-th particle. Such a twist implies that the average
spatial derivative ∂xφ assumes the value

∂φ

∂x
=

∆φ

L
. (2.51)

Using that together with the definition of the superfluid velocity vs defined in equation
(2.48), the shift in free energy density ∆ f in equation (2.49) becomes

∆ f =
1
2
ρs f

(
h̄
m

∆φ

L

)2

. (2.52)

We are now ready to deduce the scaling behavior of the superfluid density ρs f :
from equation (2.42) we know that fs(ε) ∝ εν(d+z). On the other hand, equation (2.52)
implies that ∆ f ∝ ρs f

L2 . As the diverging correlation length ξ is cut off by the linear
system size L in a finite system, we can infer that

ρs f ∝ L2 · ∆ f ∝ ξ2εν(d+z) ∝ εν(d+z−2) ∝ ξ2−d−z, (2.53)

where we made use of the scaling relation of the correlation length defined in equation
(2.35). At the critical region ε→ 0, we can hence write

ρs f = ξ2−d−zYs f (ξ/L, ξz/β), (2.54)

with an appropriate scaling function Ys f .
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Next, we focus on the compressibility κ, defined by

κ =
∂ρ

∂µ
= −

∂2 f
∂µ2 , (2.55)

with µ the chemical potential. We start with the fact that the action of the trilayer
model (2.28) we are considering obeys the symmetry [8]

µ→ µ′ = µ + iδµ, (2.56a)

Φ0(~r, τ)→ Φ′0(~r, τ) = Φ0(~r, τ) exp (iδµ/h̄) , (2.56b)

where τ denotes imaginary time. Due to the periodic boundary conditions in imagi-
nary time direction, we again get a phase twist similar to equation (2.50),

Φ0(~r, τ = 0) = ei∆φΦ0(~r, τ = βh̄). (2.57)

Using the symmetry given in equations (2.56), this can be transformed to a shift in
chemical potential µ,

µ→ µ′ = µ − i∆φ/β. (2.58)

With a Taylor expansion in µ, we can read off the corresponding shift in free energy
density f ,

∆ f =
∂ f
∂µ

(−i∆φ/β) +
1
2
∂2 f
∂µ2

(−i∆φ/β)2 + . . . . (2.59)

Hence, if we enforce a twist ∆φ in the superfluid order parameter phase, we have to
bring up the amount of energy ∆ f which in the limit β, L→ ∞ goes as

∆ f ∝ κ/β2. (2.60)

On the other hand, we found in equation (2.42) that fs ∝ ε
ν(d+z), so we can conclude

that

κ ∝ ξ2zεν(d+z) ∝ εν(d−z) ∝ ξz−d, (2.61)

which, with an appropriate scaling function Yκ and under use of equation (2.35), can
be written at criticality as

κ = ξz−dYκ(ξ/L, ξz/β), (2.62)
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2.2 Phase transitions

which gives the proper scaling of κ of the generic Mott to superfluid phase transition
in the case of unfixed total density ρ.

2.2.3 Finite size scaling

In Monte-Carlo simulations, we are always limited to the investigation of finite-size
systems. As we will see later on in section 2.4.4.1, in the path integral formulation
of the partition function Z, temperature comes in as a compact, additional imaginary
time dimension of size βh̄. Since the size of this dimension diverges for T → 0, we
are restricted to nonzero temperatures as well. However, as we have seen in the last
section, quantum phase transitions only happen at T = 0 [26]. We thus need to have
a framework that allows to draw conclusions from finite size and finite temperature
simulations to phase transitions in the thermodynamic limit at zero temperature. Such
a framework is given by finite-size scaling.

Since the correlation length ξ is equal to the linear system size L at the phase
transition, we can rewrite the scaling equations (2.54) and (2.62) as

ρs f = L2−d−zYs f (Lz/β), (2.63)

κ = Lz−dYκ(Lz/β), (2.64)

where we see here that, if we set Lz/β = const. in our simulations, both Ld+z−2ρs f and
Ld−zκ assume universal values at the critical point independent of system size. Hence,
plotting these two quantities as a function of the control parameter that drives the
quantum phase transition, the curves for different system sizes L should all intersect
at the quantum phase transition critical point ε = 0.

In our system, we have to differentiate between two different cases: we can ei-
ther cross the Mott to superfluid phase boundary varying µ which goes along with
fluctuations in particle number, or we can keep the particle number N fixed at some
integer filling, working in the canonical ensemble. In the latter case, we cross the
phase boundary exactly at the tip of the Mott lobe by variation of the ratio of the
particle hopping parameter t and the interaction strength U0. The reduced distance
to the critical point ε is then given by ε =

|µ−µc |

µ
and ε =

|t/U0−(t/U0)c |

t/U0
for both cases,

respectively.

The main difference of these two cases is that they belong to different universality
classes, i.e. they generally have different critical exponents. Whilst the transition at
integer filling is in the universality class of the 3D − XY-model [8] with dynamical
critical exponent z = 1, the generic transition with unfixed particle number has z = 2
[8].
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Figure 2.2: Finite-size scaling plot of particle number fluctuations 〈N2〉 − 〈N〉2 versus
chemical potential µ/U0 for different system sizes. One can observe that
all curves intersect in one point, namely at µ = µc. The used parameters
were U0/t = 21, U2 = 0.1U0. One can equivalently plot the expectation
value of the winding number squared 〈w2〉 and read off the critical point.
However, particle number fluctuations have proved to be more precise.

We first consider the case of a generic phase transition in the grand canonical en-
semble, varying the chemical potential µ while we fix the hopping parameter t to a
constant value. The free energy density f is given by

f = −
1
Ld

1
β

log (Z) = −
1
Ld

1
β

log Tr
[
e−βĤ

]
. (2.65)

Differentiating two times with respect to µ yields the compressibility κ,

κ = −
∂2 f
∂µ2 =

1
Ldβ

Tr
[
N̂2e−βĤ

]
Tr

[
e−βĤ

] − Tr
[
N̂e−βĤ

]2

Tr
[
e−βĤ

]2


=

1
Ldβ

(
〈N̂2〉 − 〈N̂〉2

)
, (2.66)

where N̂ is the total particle number operator and 〈.〉 denotes the thermal expectation
value in the grand canonical ensemble. As we have seen above, Ld−zκ takes on a
universal value at the critical point independent of system size if we keep Lz/β =
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2.3 Analytical predictions

constant. Hence we can conclude that

〈N̂2〉 − 〈N̂〉2 = const. for µ = µc, (2.67)

where with const. we mean independence of the linear lattice size L.

To find out the critical chemical potential µc of the Mott-to-superfluid quantum
phase transition, we simply plot the particle number fluctuation 〈N̂2〉T − 〈N̂〉2 as a
function of the chemical potential µ for different system sizes as shown in figure 2.2.
There, we can easily read off µc as the common intersection point of all curves. How-
ever, system sizes may not be chosen too small: corrections to the scaling behavior
increase with decreasing L [32]. Due to the complexity of these corrections, they can
not be discussed here.

We can proceed in the same way for the superfluid density ρs f . From [33] we know
that, for finite size systems with periodic boundary conditions, ρs f is connected to the
number of paths w that wind around the system by

ρs f =
〈w2〉L2−d

2tdβ
. (2.68)

The quantity w will become clear after we have introduced the path integral represen-
tation of the partition function Z in section 2.4.4.1. As shown above, Ld+z−2ρs f does
not depend on system size at criticality ε = 0. Hence we can deduce that

〈w2〉 = const. for ε = 0, (2.69)

where const. again means independence of linear system size L. This equation holds
true for both the generic transition with z = 2 and ε =

|µ−µc |

µ
and the canonical tran-

sition at integer filling with z = 1 and ε =
|t/U0−(t/U0)c |

t/U0
. However, at the generic

transition, particle number fluctuations have proven to yield more precise results.

In contrast, for the transition with integer density, we work in the canonical ensem-
ble where the compressibility κ is undefined. In that case, we are forced to use 〈w2〉

for the finite-size scaling analysis, see figure 2.3 for an example.

2.3 Analytical predictions

In the following section, we determine the phase boundaries of both the spin-1 Bose-
Hubbard model and the trilayer model in the Mott limit, where the Hamiltonian of
both systems is diagonal. Afterwards, we present an extensive mean-field analysis
of both models, including the computation of ground state phase diagrams in the
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Figure 2.3: Finite size scaling plot of the square of the winding number 〈w2〉 against
the on-site repulsion U0/t for different system sizes for the tip of the sec-
ond Mott lobe (note the log-scale). Again, all curves intersect in one
point, namely at U0 = U0c. The spin interaction U2 was set to U2 = 0.1U0

here. For the canonical transition at the tip of each lobe, we are forced to
perform the finite size scaling with the winding number squared, 〈w2〉.

ferromagnetic as well as the in the antiferromagnetic regime.

2.3.1 Mott limit

A very easy way to cross-check the results of our Monte-Carlo simulation is to go to
the Mott limit, i.e. t/U0 → 0. The spin-1 Bose-Hubbard Hamiltonian then reduces to

ĤS =
U0

2

∑
i

n̂i(n̂i − 1) − µ
∑

i

n̂i +
U2

2

∑
i

(
~̂F2

i − 2n̂i

)
, (2.70)
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whereas the trilayer Hamiltonian becomes

ĤT =
U0

2

∑
i

n̂i(n̂i − 1) − µ
∑

i

n̂i

+
U2

2

∑
i

(
n̂2

i+ − 2n̂i+n̂i− + n̂2
i− − n̂i+ − n̂i− + 2n̂i0n̂i+ + 2n̂i0n̂i−

)
. (2.71)

It is now trivial to predict the critical values µc of the transitions from the n-th to the
(n+1)-th Mott lobe. As we can see, both Hamiltonians are diagonal in site occupation
number basis and can be written as Ĥ =

∑
i ĥi. Hence it suffices to find the ground

state of the single-site Hamiltonian ĥi and the corresponding ground state energy.

For the ferromagnetic case, U2 < 0, the spin interaction term in ĤS is minimized
by maximizing the local magnetic moment 〈 ~̂F2

i 〉, that is 〈 ~̂F2
i 〉 = 〈n̂i(n̂i + 1)〉. The

single-site ground state energy is then simply given by

ES
0 =

U0 + U2

2
n (n − 1) − µn, (2.72)

where n = 〈n̂i〉 is the number of particles on each site. One can easily read off that
the system is in a state with n particles per site if

(n − 1) (U0 + U2) < µ < n (U0 + U2) . (2.73)

That means that, since U2 < 0, the bases of the Mott lobes shrink with increasing
|U2|, and vanish completely for |U2| = U0.

The single-site spin energy of the trilayer system is obtained when the spin inter-
action term reads U2

2 n(n − 1), so that we get for the ground state energy again

ET
0 =

U0 + U2

2
n (n − 1) − µn, (2.74)

which means that for the n-th Mott lobe, the condition

(n − 1) (U0 + U2) < µ < n (U0 + U2) (2.75)

must hold. Hence in the Mott limit, there are no differences between both systems.

In the antiferromagnetic case, U2 > 0, the on-site energy in the full spin-1 system
(2.70) is minimized by minimizing 〈 ~̂F2

i 〉. Thus, the system is in a singlet state where
〈
~̂F2〉 = F(F + 1) = 0 for states with even particle density n = even and in one of the
〈
~̂F2〉 = F(F + 1) = 2 triplet states for odd particle densities n = odd. Proceeding in
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the same way as in the ferromagnetic case above, it is easy to show that

U0 (n − 1) < µ < U0n − 2U2 for n = odd,

U0 (n − 1) − 2U2 < µ < nU0 for n = even, (2.76)

is required to be in a Mott state with n particles per site. Hence, the bases of the even
Mott lobes grow at the expense of the odd ones by the amount of 2U2. This can be
physically explained by the fact that the singlet state at even density is energetically
favoured compared to the triplet state at n = odd.

For the trilayer system, the minimal spin interaction energy is given by −U2
2 n for

even and U2
2 (1 − n) for odd particle density n. From this, it follows that

U0 (n − 1) < µ < U0n − U2 for n = odd,

U0 (n − 1) − U2 < µ < U0n for n = even. (2.77)

Again, the bases of the even Mott lobes grow at the cost of the odd ones, but this
time only by U2. Thus, in the antiferromagnetic case, we observe differences in both
systems already in the atomic limit, t/U0 → 0.

The Monte Carlo code we use has been checked in the described limit and it deliv-
ered the expected results.

2.3.2 Mean-field approach

In this section, we provide a mean-field approximation for both the full spin-1 Hamil-
tonian (2.25) and the trilayer system (2.28). In both cases, we use the decoupling
approximation [34, 35]

b̂†iσb̂ jσ =
(
b̂†iσ − 〈b̂

†

iσ〉
) (

b̂ jσ − 〈b̂ jσ〉
)

+ 〈b̂†iσ〉b̂ jσ + b̂†iσ〈b̂ jσ〉 − 〈b̂
†

iσ〉〈b̂ jσ〉

≈ 〈b̂†iσ〉b̂ jσ + b̂†iσ〈b̂ jσ〉 − 〈b̂
†

iσ〉〈b̂ jσ〉, (2.78)

where we neglect the first term because it is quadratic in fluctuations. We assume that
the expectation value 〈b̂i,σ〉 is site independent and introduce the order parameter Ψσ

for Bose-Einstein condensation in the σ component [36]

Ψσ = 〈b̂iσ〉 = 〈b̂†iσ〉. (2.79)

In equilibrium, one can see by minimization of free energy that the phases of the sep-
arate components differ by zero or π, which justifies to take the Ψσ’s as real numbers
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[36, 37].

We minimize the free energy f (Ψσ) with respect to the order parameters Ψσ and
call

ρc =
∑
σ

Ψ2
σ, (2.80)

which is zero (nonzero) in the noncondensed (superfluid) phase.

Using the decoupling approximation (2.78), the full spin-1 Hamiltonian (2.25) as
well as the trilayer Hamiltonian (2.28) can be written as the sum over a local mean
field Hamiltonian ĥMF

i

Ĥ =
∑

i

ĥMF
i , (2.81)

which allows us to minimize the free energy of each site i separately.

2.3.2.1 Full spin-1 system

The mean-field Hamiltonian ĥMF
S of the full spin-1 system is given by

ĥMF
S =

U0

2
n̂ (n̂ − 1) − µn̂ +

U2

2

(
~̂F2 − 2n̂

)
− zt

∑
σ

(
Ψσ

(
b̂†σ + b̂σ

)
− Ψ2

σ

)
, (2.82)

where z = 2d is the coordination number of the lattice and the site index i has been
dropped for convenience. In the following, we work in the single-site Fock basis
{|n+, n0, n−〉}, where nσ denotes the number of particles with spin σ. In order to have
a finite-dimensional Hilbert space, a cutoff nmax in total particle number has to be
introduced. The Hilbert space dimension then becomes

DH =
1

12
(nmax (nmax + 1) (2nmax + 1) + 9nmax (nmax + 1) + 12 (nmax + 1)) . (2.83)

We diagonalize the mean-field Hamiltonian ĥMF
S numerically to get the eigenstates

|φα〉 and their corresponding eigenenergies εα,

ĥMF
S (Ψσ) |φα(Ψσ)〉 = εα(Ψσ) |φα(Ψσ)〉 , (2.84)

where the eigenstates and -energies still depend on the order parameters Ψσ. Since
we are also interested in finite temperature behavior, we not only confine ourselves
to the search of the ground state energy E0, but rather we minimize the free energy f
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(a) Mott phase (b) Superfluid phase, U2 > 0

(c) Superfluid phase, U2 < 0. Either Ψ+ or
Ψ− is zero.

(d) Metastable state, U2 > 0

Figure 2.4: Free energy f in dependence of the superfluid order parameters Ψσ. In the
Mott phase 2.4a, there is only one minimum at Ψσ = 0. In the superfluid
phases 2.4b and 2.4c, there are multiple local minima at Ψσ 6= 0 which
are connected by the symmetries described in equations (2.86), (2.87).
Figure 2.4d shows a metastable state at a first order boundary, where the
minima at Ψσ = 0 and Ψσ 6= 0 are degenerate.

given by

f (Ψσ) = −
1
β

log Z = −
1
β

log
∑
α

e−βεα(Ψσ) (2.85)

with respect to the order parameters Ψσ using the built-in Matlab optimization func-
tion based on the Nelder-Mead algorithm [38], a derivative-free multidimensional
unconstrained minimization method. The minimization of free energy f allows us
to compute thermal averages. However, care has to be taken here: the mean-field
approximation (2.78) is only valid for small fluctuations, which goes along with a
small hopping parameter t and low temperatures β → ∞. Therefore, the mean-field
approximation will only be valid for sufficiently large β.

For the case that the minimum of the free energy f occurs at nonzero order param-
eters Ψσ 6= 0, the ground states of the cases U2 < 0 and U2 > 0 possess different
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symmetry: the antiferromagnetic case U2 > 0 has the symmetry group U(1) × S 2

[10], so we can write the order parameters as


Ψ+

Ψ0

Ψ−

 =
√
ρceiθ


− 1√

2
e−iα sin β

cos β
1√
2

eiα sin β

 . (2.86)

Likewise, the ferromagnetic case U2 < 0 has the symmetry group S O(3), so we can
write 

Ψ+

Ψ0

Ψ−

 =
√
ρcei(θ−τ)


e−iα cos2 β

2√
2 sin2 β

2 cos2 β

2

eiα sin2 β

2

 . (2.87)

This means that the minima of free energy f in the condensed phase are connected by
these symmetries. We are allowed to choose the order parameters to be real-valued
[36, 37]. In figure 2.4, we see the free energy f plotted against the order parameters
Ψσ for different phases, where we set Ψ+ = Ψ−. Figure 2.4d shows degenerate min-
ima of f at Ψσ = 0 and Ψσ 6= 0. This is the case for coexisting Mott and superfluid
phases at a first order boundary.

Computation of observables

Having all the mean-field eigenstates |φα〉 and eigenenergies εα at hand, it is not very
difficult to compute thermal operator expectation values. The basic formula of an
operator expectation value at finite temperature [39]

〈Ô〉 =
Tr

[
e−βĥMF

S Ô
]

Tr
[
e−βĥMF

S

] (2.88)

reduces in the eigenbasis of ĥMF
S to

〈Ô〉 =

∑
α e−βεα 〈φα| Ô |φα〉∑

α e−βεα
. (2.89)

This allows us to compute the total density n = 〈n̂〉, the local magnetic moment
~F2 = 〈 ~̂F2〉 and the singlet density nsg = 〈n̂sg〉. The total density operator n̂ is simply
given by

n̂ = b̂†+b̂+ + b̂†0b̂0 + b̂†−b̂− (2.90)
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and the operator of the local magnetic moment ~̂F2 is [40]

~̂F2 =
∑
α,β,γ,δ

b̂†αb̂†γ ~Fαβ
~Fγδb̂δb̂β, (2.91)

where ~F is the vector of standard spin-1 matrices, see equation (2.22). This can be
written out as

~̂F2 = n̂2
+−2n̂+n̂−+n̂2

−+n̂++n̂−+2n̂0+2n̂0n̂++2n̂0n̂−+2b̂†+b̂†−b̂0b̂0+2b̂†0b̂†0b̂+b̂−. (2.92)

However, the singlet density operator n̂sg, giving the number of pairs of particles in
a singlet state with ~F2 = 0, is a bit more difficult to obtain. To derive it, we start with
the singlet pair creation operator Â† [41],

Â† =
1
√

6

(
b̂†0b̂†0 − 2b̂†+b̂†−

)
, (2.93)

which creates a singlet state as it is given in (2.34). Since the commutator

[
Â, Â†

]
=

2
3

n̂ + 1, (2.94)

does not in general equal 1, we may not simply take n̂sg = Â†Â as the correct singlet
density operator.

Instead, we define the states
∣∣∣nnsg,m, i

〉
by

n̂
∣∣∣nnsg,m, i

〉
= (nnsg + 2m)

∣∣∣nnsg,m, i
〉
, (2.95)

Â
∣∣∣nnsg, 0, i

〉
= 0, (2.96)(

Â†
)m ∣∣∣nnsg, 0, i

〉
= N

∣∣∣nnsg,m, i
〉
, (2.97)〈

n′nsg,m
′, i′

∣∣∣ nnsg,m, i
〉

= δn′nsg,nnsgδm′,mδi′,i, (2.98)

where N is some normalization factor, nnsg is the number of particles in a non-singlet
state (i.e. nnsg = n − 2m), the newly introduced quantum number m is the number
of singlet pairs and i is just an auxiliary index to enumerate the states spanning the
subspace

∣∣∣nnsg,m
〉

which is not generically one-dimensional. We see that the singlet
density is given by nsg = 〈m〉, which is what we are solving for in the following.
Using equation (2.94) and[

n̂, Â†
]

= 2Â†, (2.99)
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we find

Â†Â
(
Â†

)m
=

(
−

2
3

m2 +
1
3

(1 + 2n̂) m
) (

Â†
)m

+
(
Â†

)m+1
Â. (2.100)

Thus, applying Â†Â on the state
∣∣∣nnsg,m, i

〉
= 1

N

(
Â†

)m ∣∣∣nnsg, 0, i
〉
, we get

Â†Â
∣∣∣nnsg,m, i

〉
=

1
N

Â†Â
(
Â†

)m ∣∣∣nnsg, 0, i
〉

= (2.101)

=

(
−

2
3

m2 +
1
3

(1 + 2n̂) m
) ∣∣∣nnsg,m, i

〉
and 〈

nnsg,m, i
∣∣∣ Â†Â

∣∣∣nnsg,m, i
〉

= −
2
3

m2 +
1
3

(1 + 2n) m. (2.102)

Obviously, the states
∣∣∣nnsg,m, i

〉
are common eigenstates of the total number op-

erator n̂ and of the operator Â†Â. Because the eigenvalues of Â†Â are given by the
polynomial on the right hand side of equation (2.102), we solve for the true singlet
density nsg = 〈m〉 computing 〈Â†Â〉 in common eigenstates of n̂ and Â†Â, i.e. in the
basis given by

{∣∣∣nnsg,m, i
〉}

.

To find these states, we start with the usual Fock basis where each state is written
as (up to normalization)

|Ψ〉 =
∑

n+,n0,n−

cn+,n0,n− |n+, n0, n−〉 ,

where cn+,n0,n− are some complex coefficients. To get the states with vanishing singlet
density

∣∣∣nnsg,m = 0, i
〉
, the condition Â |Ψ〉 = 0 has to be fulfilled,

Â |Ψ〉 =
1
√

6

∑
n+,n0,n−

cn+,n0,n−

( √
n0 (n0 − 1) |n+, n0 − 2, n−〉

−2
√

n+n− |n+ − 1, n0, n− − 1〉
)

= 0, (2.103)

so the subspace
∣∣∣nnsg = ñnsg,m = 0

〉
is spanned by

∣∣∣ñnsg, 0
〉

= span

N
∑

n+,n0,n−

cn+,n0,n− |n+, n0, n−〉

∣∣∣∣∣∣∣ cn+,n0,n− = Kn+,n0,n−cn++1,n0−2,n−+1

∨
(n+ ∨ n− < 1 ∧ n0 < 2) , n+ + n0 + n− = ñnsg

 , (2.104)
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where N is again a normalization constant and Kn+,n0,n− is given by

Kn+,n0,n− = 2

√
(n+ + 1) (n− + 1)

n0 (n0 − 1)
. (2.105)

From
∣∣∣ñnsg, 0

〉
one can go to higher singlet density subspaces

∣∣∣ñnsg,m
〉

simply by ap-
plying

(
Â†

)m
and a proper normalization of states. The basis of choice is now the one

where the independent cn+,n0,n− are the coordinates.
As a simple example, we construct the basis states of the n = 2 subspace. The

non-singlet basis states (the subspace
∣∣∣ñnsg = 2,m = 0

〉
) are given by (first condition

in (2.104))

c0,2,0 =
√

2c1,0,1, (2.106)

N
(
c0,2,0 |0, 2, 0〉 + c1,0,1 |1, 0, 1〉

)
=

√
2
3
|0, 2, 0〉 +

√
1
3
|1, 0, 1〉 , (2.107)

and (second condition in (2.104))

n+ < 1 ∨ n− < 1, n0 < 2, n+ + n0 + n− = 2, (2.108)

|0, 0, 2〉 , |0, 1, 1〉 , |2, 0, 0〉 , |1, 1, 0〉 . (2.109)

To get the basis states with a nonzero number of singlet pairs m 6= 0, we apply Â†

m-times on all non-singlet basis states that have a total particle number that is 2m

below the particle number we are looking for. In the case of n = 2, we apply Â† one
time on the non-singlet state with n = 0 (which is trivially |0, 0, 0〉) and normalize.
We get

Â† |0, 0, 0〉 =

√
1
3
|0, 2, 0〉 −

√
2
3
|1, 0, 1〉 =

∣∣∣nnsg = 0,m = 1
〉
. (2.110)

In the described basis, the expectation value of the singlet density nsg = 〈m〉 in a
general state |Ψ〉 =

∑
nnsg,m,i cnnsg,m,i

∣∣∣nnsg,m, i
〉

is given by

nsg = 〈m〉 =
∑

nnsg,m,i

m
∣∣∣cnnsg,m,i

∣∣∣2 . (2.111)
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Figure 2.5: Magnetic moment 〈 ~̂F2〉, maximal value n(n + 1) and ρc plotted against
the total particle density n. As one can see clearly, 〈 ~̂F2〉 coincides with
its maximal possible value of 〈 ~̂F2〉 = n(n + 1). Parameters where T =

0,U0/zt = 12.5,U2 = −0.1U0.

The ferromagnetic case

In the ferromagnetic case, U2 < 0, the energy is minimized by maximizing the local
magnetic moment ~F2. ~F2 thus takes on its maximal possible value n(n + 1), as can be
seen in figure 2.5. The system is ferromagnetic throughout the whole phase diagram
[42].

The Mott to superfluid phase boundaries can be obtained perturbatively within our
mean-field theory [35, 40, 43]. To this end, we split the Hamiltonian ĥMF

S up into an
unperturbed part ĥMF(0)

S and a perturbation V as

ĥMF
S = ĥMF(0)

S + V, (2.112)

with

ĥMF(0)
S =

U0

2
n̂(n̂ − 1) − µn̂ +

U2

2

(
~̂F2 − 2n̂

)
+ zt

∑
σ

Ψ2
σ (2.113)

and

V = −zt
∑
σ

Ψσ

(
b̂†σ + b̂σ

)
. (2.114)
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As ~̂F2, F̂z and n̂ commute, we work in the basis

~̂F2 |F,mF , n〉 = F(F + 1) |F,mF , n〉 ,

F̂z |F,mF , n〉 = mF |F,mF , n〉 ,

n̂ |F,mF , n〉 = n |F,mF , n〉 . (2.115)

One can directly see that odd order terms in the perturbation expansion in V van-
ish. Second order corrections E(2)

g to the ground state energy Eg are given by the
eigenvalues of the matrix [42, 44]

Mmg,m′g =

〈
Fg = ng,mg, ng

∣∣∣∣∣∣∣ V 1

E(0)
g − ĥMF(0)

S

V

∣∣∣∣∣∣∣ Fg = ng,m′g, ng

〉

=
∑

l

〈
ng,mg, ng

∣∣∣ V ∣∣∣ l〉 〈
l
∣∣∣ V ∣∣∣ ng,m′g, ng

〉
E(0)

g − E(0)
l

, (2.116)

since in the ferromagnetic case, the ground states |g〉 are (2ng + 1) - fold degenerate,
|g〉 =

∣∣∣F = ng,mg = −F . . . F, ng

〉
.

To compute the phase boundary of the first Mott lobe in the ferromagnetic case,
we have to act with the perturbation V on the ground states |1,−1 . . . 1, 1〉 with their
unperturbed eigenenergy E(0)

g = −µ + zt
∑
σ Ψ2

σ, which yields

V |1, 1, 1〉 =

− zt

Ψ+

(
|0, 0, 0〉 +

√
2 |2, 2, 2〉

)
+ Ψ0 |2, 1, 2〉 + Ψ−

√1
3
|2, 0, 2〉 −

√
2
3
|0, 0, 2〉

 ,
V |1, 0, 1〉 =

− zt

Ψ+ |2, 1, 2〉 + Ψ0

|0, 0, 0〉 + 2

√
1
3
|2, 0, 2〉 +

√
2
3
|0, 0, 2〉

 + Ψ− |2,−1, 2〉

 ,
V |1,−1, 1〉 =

− zt

Ψ− (|0, 0, 0〉 + √2 |2,−2, 2〉
)

+ Ψ0 |2, 1, 2〉 + Ψ+

√1
3
|2, 0, 2〉 −

√
2
3
|0, 0, 2〉

 .
(2.117)

Thus, the relevant eigenstates |l〉 and their energies E(0)
l that couple to |g〉 by the per-
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turbation V are

|l〉 =
∣∣∣Fl,mF,l, nl

〉
= E(0)

l =

|0, 0, 0〉 zt
∑
σ

Ψ2
σ,

|2,−2, 2〉 , |2,−1, 2〉 , |2, 0, 2〉 ,

|2, 1, 2〉 , |2, 2, 2〉 U0 − 2µ + U2 + zt
∑
σ

Ψ2
σ,

|0, 0, 2〉 U0 − 2µ − 2U2 + zt
∑
σ

Ψ2
σ. (2.118)

Due to the symmetry (2.87), we are free to choose Ψ0 = Ψ− = 0, Ψ+ =
√
ρc. The

matrix Mmg,m′g (2.116) then assumes the simple form

Mmg,m′g = z2t2


2ρc

µ−U0−U2
−

ρc
µ

ρc
µ−U0−U2

1
3ρc

µ−U0−U2
+

2
3ρc

µ−U0+2U2

 , (2.119)

where we can easily read off the eigenvalues. It turns out that the smallest ground
state energy up to second order is given by the very first entry of Mmg,m′g . The ground
state energy can thus be written as

Eg = E(0)
g + E(2)

g + . . . =

= −µ +

(
zt +

2z2t2

µ − U0 − U2
−

z2t2

µ

)
Ψ2

+ + . . . = −µ + AΨ2
+ + . . . . (2.120)

According to Landau’s theory of second order phase transitions, the ground state
energy Eg is minimized within the order parameters Ψσ. For a positive coefficient
A > 0, this is realized by Ψ+ = 0. On the other hand, if A < 0, Eg is minimal for
a finite value of Ψ+. Hence, the Mott to superfluid phase boundary is given by the
condition

A = zt +
2z2t2

µ − U0 − U2
−

z2t2

µ
= 0. (2.121)

This condition leads to the phase boundary curve

µ =
1
2

(
U0 + U2 − zt ±

√
U2

0 + 2U0U2 + U2
2 − 6U0zt − 6U2zt + z2t2

)
. (2.122)
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Figure 2.6: ρc/n as a function of zt/U0 and µ/U0 in the ferromagnetic case, U2 <
0. One can clearly identify the familiar Mott lobes, circumscribed
by the white line, which marks the Mott to superfluid phase bound-
ary that is obtained perturbatively. As indicated, the first Mott lobe
is in the threefold degenerate triplet state

∣∣∣F = 1,m f = −1 . . . 1, n = 1
〉
,

whereas in the second Mott lobe, it is in the fivefold degenerate state
|F = 2,mF = −2 . . . 2, n = 2〉, where the total magnetic moment F, its pro-
jection on the z-axis mF and n are defined in equation (2.115). In the
superfluid regime, the system is in general not an eigenstate of these op-
erators anymore. Parameters where T = 0, U2 = −0.1U0.

An analogous reasoning for the n = 2 case leads to the phase boundary condition

µ =
1
2

(
3U0 + 3U2 − zt ±

√
(zt − 3(U0 + U2))2

− 4(zt(U0 + U2) + 2(U0 + U2)2)
)
.

(2.123)

However, to get the value of ρc as defined in equation (2.80) and the free energy
f (2.85), we need to minimize f with respect to Ψσ numerically, as described above.
Figure 2.6 shows the phase boundaries computed above as well as ρc obtained by
numerical minimization of f .

Phase transitions

We numerically minimize the free energy f in dependence of the three order parame-
ters Ψ+,Ψ0,Ψ− to find superfluid (Ψmin

σ 6= 0) and Mott insulator or normal bose liquid
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Figure 2.7: ρc as a function of zt/U0 for 〈n̂〉 = 1 2.7a and 〈n̂〉 = 2 2.7b, crossing
the tips of the Mott lobes for U2 = −0.1U0. One can see that first order
transitions happen for 0 < T . 0.3 for 〈n̂〉 = 1 and 0 < T . 0.5 for
〈n̂〉 = 2.

(Ψmin
σ = 0) phases.

First, we cross the tips of the Mott lobes varying the on-site repulsion U0 and tuning
µ such that 〈n̂〉 = n. We can see in figure 2.7a, that for temperatures 0 < T . 0.3,
transitions crossing the tip of the first Mott lobe are of first order within our mean
field theory, for the ferromagnetic case of U2 = −0.1U0. Similarly, crossing the tip of
the second Mott lobe, transitions appear first order for 0 < T . 0.5, see figure 2.7b.

Also for the generic transitions crossing the phase boundaries by changing µ, we
observe first order transitions for finite temperatures, see figure 2.8. As the compress-
ibility κ is always nonzero for T > 0, we see that there is, strictly speaking, no Mott
insulating phase at finite temperatures. The phase where ρc = 0, κ 6= 0 can be seen as
a normal bose liquid [37].
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Figure 2.8: ρc and n versus the chemical potential µ/U0 for fixed zt/U0 = 0.08 and
U2 = −0.1U0. At T = 0 2.8a, transitions are continuous, whereas at T =

0.2 2.8b, superfluid to normal bose liquid (NBL) transitions appear first
order. We also see how superfluid phases shrink for the benefit of normal
bose liquid phases for finite T : there is even a third plateau occuring for
2 . µ

U0
. 2.5.

The antiferromagnetic case

In the antiferromagnetic case, U2 > 0, the energy is minimized by minimizing the
local magnetic moment ~F2. Hence, the system is in a singlet state where 〈 ~̂F2〉 =

F(F + 1) = 0 for states with even particle density 〈n̂〉 = even and in one of the
〈
~̂F2〉 = F(F + 1) = 2 triplet states for 〈n̂〉 = odd. For states with non-integer density,

we find 0 < 〈 ~̂F2〉 < 2.

The mean-field phase boundaries are again obtained perturbatively. Since for even
Mott lobes the ground state is a unique singlet state |g〉 =

∣∣∣Fg = 0,mF,g = 0, ng = even
〉
,

but for odd lobes it is one of the threefold degenerate states |g〉 =∣∣∣Fg = 1,mF,g = −1 . . . 1, ng = odd
〉
. Hence, both cases have to be treated separately,

as was done in [40].

We begin with the easier case ng = 2. Since the ground state |g〉 = |0, 0, 2〉 is non-
degenerate, we use the familiar formula of non-degenerate second order perturbation
theory,

E(2)
g =

∑
|e〉6=|g〉

|〈g |V | e〉|2

E(0)
g − E(0)

e

. (2.124)
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Acting with the perturbation V on |g〉 yields

V |0, 0, 2〉 =

− zt

Ψ+


√

5
3
|1, 1, 3〉 −

√
2
3
|1,−1, 1〉

 + Ψ0

√2
3
|1, 0, 1〉 +

√
5
3
|1, 0, 3〉


+Ψ−


√

5
3
|1,−1, 3〉 −

√
2
3
|1, 1, 1〉

 . (2.125)

The relevant states |e〉 and their corresponding energies E(0)
e that have nonvanishing

matrix elements 〈g |V | e〉 are hence given by

|e〉 =
∣∣∣Fe,mF,e, ne

〉
= E(0)

e =

|1,−1, 1〉 , |1, 0, 1〉 , |1, 1, 1〉 −µ + zt
∑
σ

Ψ2
σ,

|1,−1, 3〉 , |1, 0, 3〉 , |1, 1, 3〉 3U0 − 3µ − 2U2 + zt
∑
σ

Ψ2
σ. (2.126)

The second order correction E(2)
g then becomes

E(2)
g = z2t2

(
5/3

µ − 2U0
+

2/3
−µ + U0 − 2U2

)∑
σ

Ψ2
σ. (2.127)

Setting the coefficient of the second order term in the ground state energy Eg to zero

5/3
µ − 2U0

+
2/3

−µ + U0 − 2U2
+

1
zt

= 0, (2.128)

leads to the phase boundary condition

µ =
3
2

U0−U2−
1
2

zt±
1
6

√
9U2

0 + 36U0U2 + 36U2
2 − 42ztU0 − 84ztU2 + 9z2t2. (2.129)

Since the ground state of odd Mott lobes |g〉 =
∣∣∣F = 1,mF,g = −1 . . . 1, ng

〉
is three-

fold degenerate, the perturbative computation of the phase boundaries is very cum-
bersome, but has been done in [40]. We thus only give the result here, which is given
by

Eg = E(0)
g + D(n, t,U0,U2, µ)ρc + . . . , (2.130)

so the phase boundary condition is

D(n, t,U0,U2, µ) = zt (1 − zt (α + 4β + γ + 4δ)) = 0, (2.131)
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Figure 2.9: ρc/n as a function of zt/U0 and µ/U0 in the antiferromagnetic case,
U2 > 0. One can observe the well-known Mott lobes, bordered by the
white lines that mark the Mott to superfluid phase boundary obtained by
perturbation theory. We can see that the Landau theory of phase tran-
sitions used in the perturbative approach fails at the tip of the second
Mott lobe: There, a first order phase transition occurs. As labeled, in
the first Mott lobe, the system is in the threefold degenerate triplet state
|F = 1,mF = −1 . . . 1, n = 1〉, whereas in the n = 2 lobe, it is in the unique
|F = 0,mF = 0, n = 2〉 singlet state, with F the total magnetic moment
and mF its projection onto the z-axis, see equations (2.115). For super-
fluid phases, the system is generally not in an eigenstate of ~̂F2, F̂z and n̂
anymore. Parameters where T = 0, U2 = 0.1U0.

where [40]

α =
n + 2

3
1

E(0)(0, n − 1) − E(0)(1, n)
β =

n − 1
15

1
E(0)(2, n − 1) − E(0)(1, n)

γ =
n + 1

3
1

E(0)(0, n + 1) − E(0)(1, n)
δ =

n + 4
15

1
E(0)(2, n + 1) − E(0)(1, n)

,

(2.132)

and E(0)(S , l) is the unperturbed energy of a state with F = S , n = l. The mean-field
phase boundary for the first Mott lobe is thus given by the solution to the equation

1 − zt
(
1
µ

+
2/3

U0 − µ − 2U2
+

4/3
U0 − µ + U2

)
= 0. (2.133)

Again, as in the ferromagnetic case, we numerically minimize the free energy f
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Figure 2.10: Mean-field phase diagram in the µ/U0 − T plane for the antiferromag-
netic system at U0/zt = 12, U2 = 0.1U0. We see how superfluid phases
shrink with increasing temperature. The blue curves are lines of constant
compressibility κ. Figure 2.10b is an enlarged version of the lower left
corner of figure 2.10a. A metastable region, where superfluid and nor-
mal bose liquid phases coexist near a first order boundary, is encircled
by the black line. A similar plot can be found in [37].

with respect to the order parameters Ψσ which allows to compute ρc =
∑
σ Ψσ. Figure

2.9 shows ρc and the phase boundaries of the first and second Mott lobe computed by
perturbation theory for a antiferromagnetic system at T = 0, U2 = 0.1U1. One can
nicely observe that the even Mott lobes grow at the cost of the odd ones due to the
formation of singlet pairs. We can furthermore see that the perturbative solution fails
around the tip of the second Mott lobe: in that region, first order phase transitions
occur, which cannot be treated with Landau’s theory of phase transitions.

Figure 2.10 shows a phase diagram in the µ/U0 - T plane, where we see that super-
fluid phases shrink in favor of normal bose liquid phases with increasing temperature.
The blue lines shown mark curves of constant compressibility κ. The area encircled
with a black line marks a region where the free energy f has two distinct minima at
Ψσ = 0 and Ψσ 6= 0. Hence, there occurs phase coexistence and the superfluid to
normal bose liquid transition is of first order.
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Figure 2.11: ρc/n as a function of zt/U0 for n = 2, i.e. crossing of the tip of the second
Mott lobe at T = 0. The transition is of second order for U2 = 0, but
is of first order for 0 < U2 . 0.32U0. For U2 & 0.32U0, transitions are
continuous again. The reason for the first order transition is the breakup
of the singlet pair; the mean field ground state discontinuously changes
to a state where 〈 ~̂F2〉 6= 0.

Phase transitions

In the antiferromagnetic case, we again observe first order transitions at finite tem-
perature, similar to the ones shown in figures 2.7 and 2.8b.

More interesting is the fact that at the tip of the second Mott lobe, first order phase
transitions occur even at zero temperature, dependent on the strength of the spin in-
teraction U2. In figure 2.11, we see that at T = 0, crossing the Mott to superfluid
phase boundary at 〈n̂〉 = 2 by the variation of the on site repulsion U0 (i.e. crossing
the tip of the second lobe), the transition is of second order for U2 = 0, but is of
first order for 0 < U2 . 0.32U0, with a maximal jump in ρc at U2 ≈ 0.04U0. For
U2 & 0.32U0, the transition is continuous again, which is in good accordance with
the results obtained by a variational Gutzwiller mean-field approach in [45].

As already mentioned, in the antiferromagnetic case, the spin interaction energy
is minimized by minimization of the local magnetic moment ~F2, given in equation
(2.92). From this it follows that for Mott phases with even density n, all particles are
paired in singlets, so 〈 ~̂F2〉 = 0 and the singlet pair density nsg equals half the total
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Figure 2.12: Local magnetic moment 〈 ~̂F2〉 and the singlet density ρsg plotted against
µ/U0 (2.12a) and 〈n〉 (2.12b). We can see that the singlet density ρsg

equals half of the total density n in even Mott lobes (note that there is
no third Mott phase for the chosen U0). The local magnetic moment ~̂F2

vanishes in Mott phases with even density, whereas it is 2 in the odd
ones.

density n, nsg = n/2, see figure 2.12a. However, in Mott phases with odd density,
particles also form singlet pairs, but there is always one unpaired particle remaining,
which leads to a 〈 ~̂F2〉 = F(F + 1) = 2 triplet state and the singlet density is nsg = n−1

2 ,
see figure 2.12.

2.3.2.2 The trilayer system

For the trilayer system, the mean-field Hamiltonian ĥMF
T reads

ĥMF
T =

U0

2
n̂(n̂ − 1) − µn̂ +

U2

2
(n̂2

+ − 2n̂+n̂− + n̂2
− − n̂+ − n̂− + 2n̂0n̂+ + 2n̂0n̂−

− zt
∑
σ

(
Ψσ

(
b̂†σ + b̂σ

)
− Ψ2

σ

)
. (2.134)

As we only need the mean-field solution to the trilayer system to compare it with
our Monte Carlo results in chapter 3, we focus on the production of the corresponding
phase diagram here.

Unfortunately, in the ferromagnetic regime U2 < 0, the unperturbed ground states
are degenerate again, so the second order energy corrections are given by the eigen-
values of the appropriate Matrix M analogous to equation (2.116). Since we did not
manage to bring these eigenvalues in a suitable form which is compact enough to
be presented here, we are not able to give the corresponding phase boundary in an
analytical way. Nevertheless, we can still minimize the free energy f with respect to
the order parameters Ψσ as above, which allows us to determine the phase boundaries
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Figure 2.13: ρc/n as a function of zt/U0 and µ/U0 in the ferromagnetic case, U2 =

−0.1U0 < 0 for the trilayer mean-field system defined by the hamilto-
nian (2.134) at T = 0. We again observe the common Mott lobes. The
white lines indicate the Mott to superfluid phase boundary, obtained by
numerical minimization of the ground state energy.

with (arbitrary) numerical accuracy. The associated phase diagram is shown in figure
2.13, where the white lines indicate the curve where the order parameters Ψσ are just
not zero anymore, i.e. the numerical estimation of the mean-field phase boundary.

However, in the antiferromagnetic case U2 > 0 of the trilayer system, the ground
state of the n = 2 Mott phase is the unique Fock state |n+ = 1, n0 = 0, n− = 1〉. The
uniqueness of this state allows for an easy nondegenerate perturbative treatment via
equation (2.124). In the same way as above, we obtain the phase boundary condition
for the second Mott lobe which can compactly be written down as

1
zt

+
2

µ − 2U0
−

1
µ − U0 + U2

= 0. (2.135)

But, around the tip of the lobe, we again observe first order Mott to superfluid tran-
sitions, which is why Landau’s theory of phase transitions we used within the pertur-
bative approach fails. We can see that in figure 2.14, where the bold white lines mark
the phase border obtained by numerical minimization of f , whereas the fine white
line at the tip of the second lobe corresponds to the solution set of equation (2.135).
Around the area where thin and bold lines differ, first order transitions occur.

Regrettably, the ground states of the first Mott lobe are spanned by the three-fold
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Figure 2.14: ρc/n as a function of zt/U0 and µ/U0 in the antiferromagnetic case,
U2 = 0.1U0 > 0 for the trilayer mean-field system defined by the Hamil-
tonian (2.134) at T = 0. The white lines show the Mott to superfluid
phase boundary. The boundary of the second Mott lobe is obtained per-
turbatively (thin white line), but disagrees around the tip of the second
lobe with the result we get by minimization of f . This is because transi-
tions are of first order in that area.

degenerate Fock states |n+, n0, n−〉 = |1, 0, 0〉 , |0, 1, 0〉 , |0, 0, 1〉. Thus, perturbation
theory becomes again too involved to be covered here.

2.4 Monte Carlo simulations

Monte Carlo methods have a vast scope of application spanning over almost all areas
in physics. The basic concept is to sample generic, analytically intractable integrals
by random numbers which always comes at the cost of a statistical error. In this work,
we focus on Monte Carlo methods as they are used in the field of ultracold gases.

The whole section is self-contained and may be a useful summary for readers new
to the field. We start with simple sampling and importance sampling techniques be-
fore we have a look on the basic principles on Markov chain Monte Carlo and the
Metropolis updating scheme. We are then ready to address Path Integral Monte Carlo
and the worm algorithm. The section is closed with a description of two new kinds
of updates invented to preserve ergodicity in the trilayer model.
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2.4.1 Simple sampling

Let us start with a simple example [46]: suppose we have a function f (x),

f (x) = xn (2.136)

and we want to estimate the value of the integral I,

I =

∫ 1

0
f (x) dx. (2.137)

The simplest way to get a Monte Carlo estimation for the integral I is to draw M

uniformly distributed random numbers xi, i = 1 . . . M, of the interval xi ∈ [0, 1] and
evaluate the sample mean f of f (x),

I ≈ f =
1
M

M∑
i=1

f (xi) , (2.138)

which can be taken as an approximation to the integral I we are interested in. This
method is called the simple sampling method. To get the error of our estimate, we
need to know the sample variance δ f 2,

δ f 2 =
1
M

M∑
i=1

(
f (xi) − f

)2
. (2.139)

Since we are using uncorrelated random numbers xi in our estimation, we can use the
usual formula [32], for the statistical error δI,

δI =

√
δ f 2/(M − 1). (2.140)

Looking at equation (2.140), we see that the estimation error δI depends on the vari-
ance σ2 ≈ δ f 2 of the function f in the integration interval. Thus, if the function f (x)

we are integrating variates strongly in the integration interval, i.e. if n . −1 or n � 1
in our example of f (x) = xn, the variance σ2 of f is high and the estimation for I

becomes bad relative to the number of samples M.
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2.4.2 Importance sampling

In the case of a large variance σ2, a more efficient way to evaluate the integral I is
given by the importance sampling method. We can rewrite equation (2.137) as

I =

∫ 1

0

f (x)
p (x)

p (x) dx, (2.141)

where we are considering I to be a weighted mean of the function g (x) = f (x) /p (x).
Using random numbers yi that are distributed according to p, I can be estimated via

I ≈
1
M

M∑
i=1

g (yi) . (2.142)

The advantage of this method compared to simple sampling is that the error of the
estimation of I now goes with the sample variance δg2 of g (x), which can consider-
ably be smoothed out using a random number distribution p (x) that is close to the
original function f (x). Importance sampling thus requires some prior knowledge on
the function f we want to integrate.

2.4.3 Markov chain Monte Carlo

In both examples above, we were able to use uncorrelated sampling points xi, yi.
However, in almost all physical problems, it is either highly inefficient or even im-
possible to generate uncorrelated sampling points or states of a configuration space.
To understand this, we take a look at the Ising model (see e.g. [47] for a Monte-Carlo
simulation) with the Hamiltonian

Ĥ = −J
∑
〈i, j〉

Ŝ z
i Ŝ

z
j, (2.143)

where the spin operators Ŝ i, Ŝ j with the eigenvalues S i, S j ± 1 are located on a hy-
percubic lattice and 〈i, j〉 indicates summation over nearest neighbor sites. Since
analytical solutions of the Ising model exist in one and two dimensions [48], it has
proven its worth to be a top toy model to study phase transitions. In the ferromagnetic
case, J > 0, the Ising model on an infinite square lattice undergoes a phase transition
at Tc = 2J/kb

log(1+
√

2) with the order parameter magnetization, which is given by

m̂ =
1
N

N∑
i=1

Ŝ z
i , (2.144)
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where the index i runs over all N sites in the square lattice. The thermal average 〈m̂〉
in the canonical ensemble is [39]

〈m̂〉 =
Tr

[
e−βĤm̂

]
Tr

[
e−βĤ

] =

∑
s 〈Ψs| e−βĤm̂ |Ψs〉∑

s 〈Ψs| e−βĤ |Ψs〉
=

∑
s mse−βEs∑

s e−βEs
, (2.145)

where the |Ψs〉 are the eigenstates of the Hamiltonian H labeled by s, and ms and
Es are the corresponding magnetizations and eigenenergies, respectively. It is easily
seen that the eigenstates |Ψs〉 are product states that can be written as

|Ψs〉 =
∣∣∣S z

1, S
z
2, . . . , S

z
N

〉
, (2.146)

with the spin operator eigenvalues S z
i in the i-th entry.

What Markov chain Monte Carlo does in contrast to direct sampling techniques is
not to generate mutually independent states |Ψs〉 to probe the configuration space, but
states that are constructed out of their directly preceding states. A simple example of
such a process would be the flip of a single spin S z

i → −S z
i . This would apparently

lead to high correlations within a squence of consecutive states which have to be taken
into account with regard to convergence and error estimation.

If we would perform a random walk through the configuration space by flipping
one spin at a time, we would sample equation (2.145) in a uniform manner. As
we have seen in the previous section, there is a much smarter way. We can rewrite
equation (2.145) as

〈m̂〉 =

∑
s 〈Ψs|

(
e−βEsms/P(s)

)
P(s) |Ψs〉∑

s 〈Ψs| (e−βEs/P(s)) P(s) |Ψs〉
, (2.147)

which corresponds to the method of importance sampling, where we select the states
|Ψs〉 according to the distribution P(s). If we can manage to set P(s) equal to the
Boltzmann distribution e−βEs , equation (2.147) simplifies to

〈m〉 =
1
M

M∑
i=1

mi. (2.148)

An algorithm which is capable to sample the states |Ψs〉 according to the Boltzmann
distribution is the Metropolis algorithm [49].
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2.4.3.1 Metropolis algorithm

As stated above, we want to generate a Markov chain of states
∣∣∣Ψs1

〉
→

∣∣∣Ψs2

〉
→ . . .→∣∣∣ΨsM

〉
, where the states are Boltzmann distributed according to their eigenenergies Esi .

This can only be achieved by an appropriate design of the transition probabilities Ti→ j

to go from a state
∣∣∣Ψsi

〉
to the state

∣∣∣Ψs j

〉
. To this end, we take a look at the master

equation for the probability Wi (s) to observe the state |Ψs〉 in the i − th Monte Carlo
step,

Wi (s) = Wi−1 (s) +
∑

s′

[
Ts′→sWi−1

(
s′
)
− Ts→s′Wi−1 (s)

]
, (2.149)

which is nothing more than a continuity equation on the probability Wi(s). In equi-
librium, Wi(s) must not depend on the Monte Carlo step i, i.e. Wi(s) = W(s). Hence
the master equation reads

0 =
∑

s′

[
Ts′→sW

(
s′
)
− Ts→s′W (s)

]
. (2.150)

A sufficient condition to fulfill equation (2.150) is to claim that each term in the sum
over the states s′ vanishes separately, i.e.

Ts′→sW
(
s′
)

= Ts→s′W (s) . (2.151)

This is the famous detailed balance condition. Although it is not a necessary condi-
tion [50] for (2.150) to hold, it is used in most Markov chain Monte Carlo algorithms
since it is relatively easy to handle.

In the Metropolis algorithm, the condition of detailed balance is fulfilled by setting
the transition probabilities Ts→s′ to

Ts→s′ = min
(
1,

W(s′)
W(s)

)
. (2.152)

As we want W to be the Boltzmann distribution W(s) = Z−1e−βEs , this becomes

Ts→s′ = min
(
1, e−β(Es′−Es)

)
, (2.153)

i.e. we take the proposed step s → s′ with acceptance probability q = 1 if Es′ ≤ Es

and with probability q = e−β(Es′−Es) if Es′ > Es.

We can summarize the Metropolis algorithm for the simple Ising model with a
short recipe [32]:
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Single spin flip Metropolis algorithm for the simple Ising model

(1) Choose an initial state |Ψ1〉 = |S 1, S 2, . . . , S N〉.

(2) Choose a random site i to flip the spin, S i → −S i.

(3) Calculate the difference in energy ∆E = Eafter − Ebefore of energies before and
after the update.

(4) Draw a uniformly distributed random number x ∈ [0, 1].

(5) If x < e−β∆E, flip the spin. Otherwise do nothing.

(6) Compute the magnetization expectation value 〈m〉 in the generated state and
account for it in the thermal average given by equation (2.148).

(7) Go back to (2).

The Metropolis algorithm was further developed by Hastings in 1970 [51], who
first introduced the concept of a priori probabilities.

2.4.3.2 A priori probabilities

Imagine we are in step (2) of the single spin flip Metropolis algorithm described in
the box above. For an Ising model with N sites, there are N + 1 possibilities for the
next state of the Markov chain, namely to flip one of the N spins or to stay in the state
we already are, not changing any spin. Whilst staying in the state we are is implied
via Metropolis rejection, we are not forced to draw one of the other N possible states
with a uniform probability distribution. We are rather free to choose the flipping site
i with any other a priori probability distribution we believe to be meaningful (the
single spin flip algorithm may not be a good example here - we do not gain anything
if we go off the uniform distribution in that case).

The only thing we have to pay attention to is to fulfill the detailed balance condi-
tion, equation (2.151). The transition probability Ts→s′ to go from state s to s′ is then
split up in two parts,

Ts→s′ = As→s′ ps→s′ , (2.154)

where As→s′ is the probability to propose to go to state s′ being in state s, and ps→s′

is the still necessary acceptance probability. The detailed balance condition is now
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given by

As′→s ps′→sW
(
s′
)

= As→s′ ps→s′W (s) , (2.155)

which is fulfilled if the acceptance probability reads

ps→s′ = min
(
1,

W(s′)
As→s′

As′→s

W(s)

)
, (2.156)

which reduces to (2.152) for symmetric proposal functions As→s′ = As′→s.

To get representative samples of our observables, it is important to quickly go
around in configuration space. This means we have to keep rejection probabilities
small, which can be done using appropriate proposal functions As→s′ .

2.4.3.3 Ergodicity

It is indispensable for every Monte Carlo simulation to fulfill the principle of ergod-

icity. Ergodicity means that every configuration of the system should be attainable
according to its Boltzmann weight in a reasonable amount of simulation time, no
matter which initial state we have chosen. Let us, for instance, consider the Ising
model deep in the ferromagnetic phase: in this phase, all spins are either pointing up
(〈m̂〉 = 1) or pointing down (〈m̂〉 = −1), both cases occuring with the same Boltz-
mann weight Z−1exp

(
−βE〈m̂〉=±1

)
≈ 0.5. In that regime, the single spin flip algorithm

described above is not ergodic anymore: to go from the state where 〈m̂〉 = 1 to the
state where 〈m̂〉 = −1, we have to pass all the states with any other magnetization
in between. These states are very unlikely to be hit in the ferromagnetic limit, and
going through all of them practically never happens. A simple solution to that prob-
lem would be the integration of an update that is capable to flip more than one spin
at once, as for example in the Cluster algorithm by Swendsen, Wang [52] and Wolff
[53].

In our Monte-Carlo simulation of the trilayer system 2.28, we were faced with
a very similar problem, which we were able to circumvent by introduction of the
Monte-Carlo update schemes described in section 2.4.5.3.
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2.4.4 Path integral Monte Carlo

2.4.4.1 Path integral decomposition of the grand canonical partition

function

In this section, we derive a representation of the grand canonical partition function
using the Feynman path integral formulation, which is the basis of a whole class of
Monte Carlo algorithms for quantum many body systems. We closely follow [29]
here.

The dynamics of a quantum system is thoroughly described by the Schrödinger
equation,

i
∂

∂t
|ΨS (t)〉 = Ĥ |ΨS (t)〉 , (2.157)

where we assume that the Hamiltonian Ĥ does not depend explicitly on time. States
at different times are connected by the unitary time evolution operator [44] ÛS (t, t0)
as

|ΨS (t)〉 = ÛS (t, t0) |ΨS (t0)〉 = e−i(t−t0)Ĥ |ΨS (t0)〉 . (2.158)

Given the solution to the Schrödinger equation at t0, it is thus easy to generate solu-
tions at generic times t. Equation (2.157) is the equation of motion of the so-called
Schrödinger picture, where it is assumed that the states |ΨS (t)〉 are generally time
dependent, whereas operators can at most depend explicitly on time.

In the case of a time independent Hamiltonian Ĥ that can be written as

Ĥ = Ĥ0 + Ĥ1, (2.159)

we can define the interaction picture by the interaction state vector

|ΨI(t)〉 := eiĤ0t |ΨS (t)〉 . (2.160)

The equation of motion of this wave function can be obtained using the Schrödinger
equation (2.157) and reads

i
∂

∂t
|ΨI(t)〉 = Ĥ1(t) |ΨI(t)〉 Ĥ1 = eiĤ0tĤ1e−iĤ0t. (2.161)

By making use of equations (2.157) and (2.158), we get the time evolution operator
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for the state |ΨI(t)〉,

|ΨI(t)〉 = ÛI (t, t0) |ΨI(t0)〉 = eiĤ0te−iĤ(t−t0)e−iĤ0t0 |ΨI(t0)〉 . (2.162)

So far we do not see any connection to the grand canonical partition function that
we want to express in a path integral decomposition. To this end, we have to introduce
the concept of imaginary time. We call τ = it and rewrite the time evolution operator
of the interaction picture as

ÛI (τ, τ0) = eĤ0τe−Ĥ(τ−τ0)e−Ĥ0τ0 , (2.163)

explicitly allowing τ to assume real values (we can go back and forth from real to
imaginary time by means of analytic continuation; see e.g. [29] for a thorough dis-
cussion). Note that ÛI is now in general not unitary anymore.

From (2.163), we can deduce the equation

e−Ĥτ = e−Ĥ0τÛI (τ, 0) . (2.164)

Setting τ = β and taking the trace, we recover the partition function

Z = Tr
[
e−βĤ

]
= Tr

[
e−βĤ0ÛI (β, 0)

]
=

∑
i

〈i| e−βĤ0ÛI (β, 0) |i〉 . (2.165)

The crucial point is that we can perturbatively expand the operator Û (τ, τ0). For
that purpose, we derive ÛI (τ, τ0) with respect to τ,

∂

∂τ
ÛI (τ, τ0) = −Ĥ1(τ)ÛI (τ, τ0) . (2.166)

Integrating on both sides from τ0 to τ yields

ÛI (τ, τ0) = 1 −
∫ τ

τ0

dτ1Ĥ1(τ1)ÛI (τ1, τ0) . (2.167)

Without proof of convergence, we iteratively solve this integral equation and obtain

ÛI (τ, τ0) = 1 −
∫ τ

τ0

dτ1Ĥ1(τ1) +

∫ τ

τ0

dτ2

∫ τ2

τ0

dτ1Ĥ1(τ2)Ĥ1(τ1) + . . .

= 1 −
∫ τ

τ0

dτ1Ĥ1(τ1) +

∞∑
n=2

(−1)n
∫ τ

τ0

dτn . . .

∫ τ2

τ0

dτ1Ĥ1(τn) . . . Ĥ1(τ1).

(2.168)

We insert this into equation (2.165) and make use of the completeness relation by

55



2 Theory

inserting n− 1 identity operators 1 =
∑

i |i〉 〈i| between the products of n Ĥ1 operators
to evaluate the trace to get

Z =

∞∑
i=0

e−βEi +

∞∑
n=1

∑
|i1〉,...,|in〉

(−1)n
∫ β

0
dτn . . .

∫ τ2

0
dτ1 〈i1| Ĥ1 |in〉 ·

e−(τn−τn−1)Ein · 〈in| Ĥ1 |in−1〉 · e−(τn−1−τn−2)Ein−1 · . . . · (2.169)

〈i3| Ĥ1 |i2〉 · e−(τ2−τ1)Ei2 〈i2| Ĥ1 |i1〉 e−(β−τn+τ1)Ei1 ,

where we have chosen the inserted basis sets
∣∣∣i j

〉
to be the eigenbasis of Ĥ0 with the

eigenenergies Ĥ0

∣∣∣i j

〉
= Ei j

∣∣∣i j

〉
.

The configuration space can now be seen as the set of all possible combinations
of the expansion order n, the imaginary times of the matrix elements of Ĥ1, τ1 . . . τn,
and the inserted basis sets |i1〉 . . . |in〉.

At this point, the partition function Z of the d-dimensional quantum system corre-
sponds to that of a d + 1-dimensional classical system with the additional dimension
of imaginary time τ. As the trace of equation (2.165) implies that the first Bra and
the last Ket in (2.169) are identical, we see that τ is periodic with periodicity β.

2.4.4.2 Path integral Monte Carlo for the trilayer Hamiltonian

In this work, we primarly study the Hamiltonian introduced in equation (2.28),

Ĥ = −t
∑
〈i, j〉,σ

(
b̂†i,σb̂ j,σ + b̂†j,σb̂i,σ

)
+

U0

2

∑
i

n̂i(n̂i − 1) − µ
∑

i

n̂i

+
U2

2

∑
i

(n̂2
i+ − 2n̂i+n̂i− + n̂2

i− − n̂i+ − n̂i− + 2n̂i0n̂i+ + 2n̂i0n̂i−).

In our Monte Carlo simulation, we work in the site and spin occupation number
basis. As an algorithmic trick, we compute a 3d system that measures only three
sites in z-direction. We then get three stacked layers, each occupied only by one
specific spin species so that we use the z-coordinate as a spin index, see figure 2.15.
The most convenient choice is to collect all diagonal terms in Ĥ0, whereas the one-
body tunneling operators of the kinetic term are treated as perturbations Ĥ1. With this
choice, the negative sign of the kinetic term cancels with the (−1)n of the path integral
expansion and we can be sure not to run into any sign problem. A single state out of
the configuration space of this system can nicely be visualized diagrammatically, see
figure 2.16.

The matrix elements 〈ik| Ĥ1 |ik+1〉 are only nonzero if the states differ just by the
hopping of a particle to one of its nearest neighbor sites, i.e. if |ik〉 ∝ b̂†j b̂l |ik+1〉,

56
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Figure 2.15: Schematic representation of a Fock state in the trilayer setup. We use
the already existing code for the 3d Bose-Hubbard model and use the
site index in z-direction as spin index σ. The worm can only propagate
in a single layer, interlayer hopping tz is set to zero.

where j and l are adjacent sites. In the following, we refer to these matrix elements
as hoppings, interactions or kinks.

We see that a state out of the partition function corresponds to a configuration of
closed loops, called worldlines, in the site - imaginary time space, where a single
loop depicts a particle starting at some site iσ at τ = 0, then hopping to other sites
at later times τ, finally closing on itself again on site iσ at τ = 0 (keep in mind the
β-periodicity of τ). The job of our path integral Monte Carlo algorithm is to sample
all these closed loop configurations according to their respective weights given by

W = 〈i1| Ĥ1 |in〉 · e−(τn−τn−1)Ein · 〈in| Ĥ1 |in−1〉 · e−(τn−1−τn−2)Ein−1 · . . . ·

· 〈i3| Ĥ1 |i2〉 · e−(τ2−τ1)Ei2 〈i2| Ĥ1 |i1〉 e−(β−τn+τ1)Ei1 . (2.170)

For example, this may be done using local updates [54], where a pair of hopping
elements is inserted that causes a particle to hop to one of its neighboring sites and
back at some later time.

Since the number of particles in the system is given by the number of loops winding
around imaginary time direction, an algorithm based only on such local updates can
not sample the grand canonical partition function Z, because it is not able to insert or
remove closed loops and therefore particles.
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Figure 2.16: Diagrammatic visualization of a typical configuration of the partition
function (2.169) for the trilayer Bose-Hubbard model. There are five
sites shown, imaginary time τ runs from left to right. Dashed lines indi-
cate that the site is unoccupied, fine solid lines denotes single and bold
lines double occupation. At the times τ j, particles hop from one side
to another, corresponding to the matrix elements

〈
i j

∣∣∣ Ĥ1

∣∣∣i j−1

〉
. Between

two instants τ j and τ j−1, the system is in the Fock state
∣∣∣i j

〉
with diagonal

energy Ei j .

Furthermore, using periodic boundary conditions, the superfluid density ρs f is di-
rectly related to the winding number w of loops winding around the spatial directions
[33] by

ρs f =

〈
w2

〉
L2−d

2tdβ
.

Also, w cannot be changed using merely local updates.

2.4.5 The worm algorithm

A particularly efficient updating scheme is given by the worm algorithm [11, 12],
which does not suffer from the ergodicity problems concerning particle and winding
numbers mentioned above. It is capable to sample the grand canonical partition func-
tion with the aid of a further disconnected worldline, the so-called worm, see figure
2.17. Along the way, it samples the Matsubara Green function

G (iσ, jσ, τ, τ0) =
〈
T̂τb̂iσ (τ0) b̂†jσ (τ)

〉
= Tr

[
T̂τb̂iσ (τ0) b̂†jσ (τ) e−βĤ

]
, (2.171)
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Figure 2.17: Similar diagram as 2.16, but this time with an additional open-ended
worldline called worm. Worm head an tail are indicated by circles. This
configuration does not belong to the partition function Z anymore, it
is rather part of the so-called extended partition function Ze, equation
(2.172).

with T̂τ the time ordering operator. The sum over all possible Green functions defines
the extended partition function

Ze =

∞∑
n=0

∑
|i1〉,...,|in〉

∑
iσ, jσ

∫ β

0
dτn . . .

∫ τ2

0
dτ1W, (2.172)

where W is given by

W = 〈i1| Ĥ1 |i2〉 · e−(τ2−τ1)Ei2 · 〈i2| Ĥ1 |i3〉 · e−(τ3−τ2)Ei3 · . . . · ·e−(τk−τk−1)Eik 〈ik| b̂
†

iσ |ik+1〉 ·

. . . · e−(τl−τl−1)Eil 〈il| b̂ jσ |il+1〉 · . . . · e−(τn−τn−1)En 〈in| Ĥ1 |i1〉 e−(β−τn+τ1)Ei1 .

(2.173)

It is important to keep in mind the time ordering also for the worm operators b̂†iσ(τ) =

b̂†iσ(τk), b̂ jσ(τ0) = b̂ jσ(τl).

The extended configuration space is composed of all possible combinations of the
expansion order n, inserted basis sets |i1〉 . . . |in〉, hopping times τ1 . . . τn and the sites
iσ, jσ and times τ0, τ of the two worm ends. The worm algorithm samples these con-
figurations according to their weights given in (2.173) as it moves one of the worm
ends, called the worm head, through the configuration space. When the worm head
encounters the other end of the worm, called the worm tail, the worm closes and the
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Figure 2.18: Graphical representation of the move update. The worm head b̂ jσ resides
at site jσ at τX in configuration X. The move update proposes to go to
another point in time τY leaving the system in configuration Y . The sys-
tem is in the Fock state |ik〉 before the worm head and in |ik+1〉 afterwards.
The corresponding diagonal energies are denoted by Eik and Eik+1 .

configuration is part of the partition function Z, except for the worm matrix element
〈ik| b̂iσ(τ0)b̂†iσ(τ0) |ik〉. This matrix element defines a relative weight between the ex-
tended and the original partition function and can be chosen freely, but is usually set
to 1.

Clearly, we are free to choose either b̂†iσ or b̂iσ as the mobile end of the worm, just
as we are free to move up- or downwards in imaginary time τ. For convenience, we
always take b̂iσ to be the worm head moving in positive imaginary time direction in
the following description of worm updates.

2.4.5.1 Worm type updates

To ensure that all configurations are sampled in accordance with their weights (2.173),
we have to respect the detailed balance condition (2.155), which led us to the accep-
tance probability

pX→Y = min
(
1,

W(Y)
AX→Y

AY→X

W(X)

)
for a step from configuration X to Y . We see that only relative weights matter, so all
common factors of W(X), W(Y) cancel out directly.

In the following, we give an overview over all worm type updates in the algorithm
we use [55].

Move in imaginary time

The first type of update we are considering is a step of the worm head in imaginary
time, see figure 2.18. In a given configuration X, the worm head b̂ jσ resides at site
jσ at a time τX. The move update proposes to move the worm head to some later or

60
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earlier time τY , staying on the same site jσ. The non-canceling factors of the weights
W(X), W(Y) read

W(X) = e−τX(Eik−Eik+1),

W(Y) = e−τY(Eik−Eik+1), (2.174)

so the acceptance ratio for the move update becomes

pX→Y = min
(
1,

e−∆τEik

e−∆τEik+1

AY→X

AX→Y

)
. (2.175)

where ∆τ = τY − τX. We want to choose the proposal functions AX→Y , AY→X such
that rejections are minimal, that means that nominator and denominator in equation
(2.175) should always be of the same order of magnitude. It would therefore be a
good choice if they contain the exponentials,

AX→Y ∝ e−∆τEik ,

AY→X ∝ e−∆τEik+1 . (2.176)

In order that the proposal functions are valid probability distributions, we have to
ensure that the exponents are always negative. This means that, under the assumption
that we are moving in positive time direction ∆τ > 0, the diagonal energies Eik , Eik+1

have to be positive. Since only energy differences physically matter, we are free to
shift the energies like

Eik ,ik+1 = Eik ,ik+1 − min
(
Eik , Eik+1

)
+ Eoff, (2.177)

where the inclusion of the offset energy Eoff will become clear shortly. Properly
normalized, the proposal functions look like

AX→Y = Eike
−∆τEik ,

AY→X = Eik+1e
−∆τEik+1 . (2.178)

The acceptance probability then becomes

pX→Y = min
(
1,
Eik+1

Eik

)
= min

(
1,

Eik+1 − min
(
Eik , Eik+1

)
+ Eoff

Eik , − min
(
Eik , Eik+1

)
+ Eoff

)
. (2.179)

It is now clear that the offset energy is needed to ensure that we have a non-zero
denominator. Though a vanishing denominator would theoretically be no problem,
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difficulties with anomalously long worms and ergodicity are described in [55].

Up to now, we did not specify what happens if the worm encounters an interaction
during its time step. Both the diagonal energies and matrix elements might change.
We first focus on the Matrix elements. Suppose we have a worm head b̂iσ resid-
ing on site iσ at time τX just before the hopping matrix element 〈ik+1| Ĥ1 |ik+2〉 =

〈ik+1| b̂
†

jσ′ b̂lσ′ |ik+2〉. The relevant factors in the partition function are∑
|ik+1〉

. . . 〈ik| b̂iσ |ik+1〉 〈ik+1| b̂
†

jσ′ b̂lσ′ |ik+2〉 . . . = . . . 〈ik| b̂iσb̂†jσ′ b̂lσ′ |ik+2〉 . . . . (2.180)

If iσ 6= jσ′, all operators commute and we can pass the hopping operators to get

. . . 〈ik| b̂iσb̂†jσ′ b̂lσ′ |ik+2〉 . . . = . . . 〈ik| b̂
†

jσ′ b̂lσ′ b̂iσ |ik+2〉 . . .

=
∑
|ĩk+1〉

. . . 〈ik| b̂
†

jσ′ b̂lσ′
∣∣∣ĩk+1

〉 〈
ĩk+1

∣∣∣ b̂iσ |ik+2〉 . . . . (2.181)

However, in the case where the worm head does not commute with the hopping matrix
element, we are not allowed to simply pass. This happens if the worm head b̂iσ tries
to pass an interaction from iσ to lσ, b̂†iσb̂l. We then stop at the interaction and propose
a new Monte Carlo step. This means that, if such an interaction happens at ∆τint after
the worm head, our proposal function becomes

AX→Y =


Eike

−∆τEik if∆τ < ∆τint,∫ ∞
∆τint
Eike

−∆τEik d∆τ if∆τ = ∆τint,

0, otherwise.

(2.182)

Also, by passing an interaction, the diagonal energies E before and after the worm
head as well as before and after the passed interaction may possibly change. Suppose
again that the worm head is on site iσ at time τX, and it is proposed to go to the time
τY by passing an interaction from jσ′ to lσ′ at time τint. The relevant factors are then

W(X) = . . . 〈ik| b̂iσ |ik+1〉 〈ik+1| b̂
†

jσ′ b̂lσ′ |ik+2〉 ·

· exp
(
−τX

(
Eik − Eik+1

)
− τint

(
Eik+1 − Eik+2

))
. . . ,

W(Y) = . . . 〈ik| b̂
†

jσ′ b̂lσ′ |ĩk+1〉 〈ĩk+1| b̂iσ |ik+2〉 ·

· exp
(
−τint

(
Eik − Eĩk+1

)
− τY

(
Eĩk+1
− Eik+2

))
. . . . (2.183)

We are only allowed to pass the interaction if the relative weight W(Y)/W(X) remains
the same as if there was no interaction in between the step we want to take. That
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means that it is a necessary condition that

W(Y)
W(X)

= exp
(
−τint

(
Eik − Eĩk+1

+ Eik+2 − Eik+1

)
− τY

(
Eĩk+1
− Eik+2

)
+ τX

(
Eik − Eik+1

))
!
= exp

(
−∆τ

(
Eik − Eik+2

))
. (2.184)

Let us check that condition first for an interaction that does not involve the worm head
site, i.e. i 6= j, i 6= k, but the spins σ,σ′ may be the same.In equation (2.184), we are
only faced with diagonal energy differences, and we surely know that the energies E

can only differ in terms involving the occupation numbers niσ, n jσ′ , nkσ′ . Furthermore,
looking at the Hamiltonian given in equation (2.28), we see that there are no diagonal
terms that mix different sites. We thus write the diagonal energies as sums of the on-
site energies E which depend on the occupation numbers niσ(|i〉), n jσ′(|i〉), nkσ′(|i〉).
Calling these occupation numbers in state |ik〉 niσ, n jσ′ and nkσ′ , we can write

Eik = E (niσ) + E(n jσ′) + E (nkσ′) ,

Eik+1 = E(niσ + 1) + E(n jσ′) + E(nkσ′),

Eik+2 = E(niσ + 1) + E(n jσ′ − 1) + E(nkσ′ + 1),

Eĩk+1
= E(niσ) + E(n jσ′ − 1) + E(nkσ′ + 1).

Inserting that into equation (2.184), we end up with

W(Y)
W(X)

= exp (−τY (E(niσ) − E(niσ + 1)) + τX (E(niσ) − E(niσ + 1)))

= exp
(
−∆τ

(
Eik − Eik+2

))
, (2.185)

which is exactly the condition that allows the worm head to pass interactions that do
not happen on the worm head site.

Next, we consider the case where the worm head b̂iσ passes an interaction that
happens on the same site b̂†iσ′ b̂ jσ′ , but in a different spin layer σ′ 6= σ (the case
where σ′ = σ was already treated above). The relevant occupation numbers are now
niσ(|i〉), niσ′(|i〉), n jσ′(|i〉), and we call niσ, niσ′ , n jσ′ the occupation numbers in the state
|ik〉. Since the hamiltonian (2.28) contains mixed terms of particles with different spin
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on the same site, we are only allowed to split the energies as

Eik = E(niσ, niσ′) + E(n jσ′),

Eik+1 = E(niσ + 1, niσ′) + E(n jσ′),

Eik+2 = E(niσ + 1, niσ′ − 1) + E(n jσ′ + 1),

Eĩk+1
= E(niσ, niσ′ − 1) + E(nkσ′ + 1).

Plugging that in to equation (2.184), we immediately see that the necessary condition
to pass the interaction cannot be fulfilled generically. We thus have to stop the worm
head each time it encounters an interaction that happens on the same physical site
i, but in a different spin layer σ′ 6= σ. We then proceed again by proposing a new
Monte Carlo step.

Let us give a short summary of the move update here [55]:

The move update in the trilayer Bose-Hubbard worm algorithm

(1) Draw a random time step ∆τ that is distributed according to the proposal
distribution equation (2.178). Practically, this is implemented by drawing
a uniformly distributed random number u ∈ [0, 1), and then computing the
exponentially distributed time shift window by ∆τ = − log(u)/E, where E

is the diagonal energy of the Fock state before (after) the worm head for
moves in positive (negative) imaginary time direction.

(2) If no interaction happens on the worm head site i between τX and τY , change
the worm head time from τX to τY .

(3) If an interaction happens that does not commute with the worm head at time
τX < τint < τY , only update the worm time to τint.

(4) If an interaction happens at τX < τint < τY on the same site i as the worm
head, but in another spin layer σ′ 6= σ, we also have to stop the worm
there, updating its time from τX to τint.

Inserting an interaction

To ergodically map the configuration space using the worm algorithm, we clearly
need an update scheme that generates hoppings to nearest neighboring sites, i.e. ma-
trix elements of the kinetic term 〈ik| Ĥ1 |ik+1〉. This is done by proposing to the worm
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Figure 2.19: Schematic representation of the insert kink update. The worm head,
residing on site jσ in configuration X, hops to its neighboring site lσ in
configuration Y . Note that this update is only possible if the worm is not
forced to stop at an interaction. The sign of the infinitesimal time step
dτ determines the time direction in which the worm will move after the
hopping has happened - it therefore defines the order of the operators in
the weights of equation (2.186).

head to hop to one of its adjacent sites, see figure 2.19. This kind of update is only
possible if the worm head is not forced to stop at an interaction, as described in step
(2) of the box above.

The relevant weights of a worm head b̂ jσ jumping from site jσ to site lσ as depicted
in figure 2.19 are given by

W(X) = e−τinsEik

〈
ik

∣∣∣ b̂ jσ

∣∣∣ ik+1

〉
eτinsEik+1 ,

W(Y) = e−τinsEik

〈
ik

∣∣∣ b̂†lσb̂ jσ

∣∣∣ ĩk

〉
eτinsEĩk

−(τins+dτ)Eĩk

〈
ĩk

∣∣∣ b̂lσ

∣∣∣ ik+1

〉
e(τins+dτ)Eik+1 .

(2.186)

As we only included the infinitesimal time step dτ to fix the time ordering of operators
in the weights above, we can set it to zero and see that in the relative weight, all
exponentials cancel out so that the acceptance probability is given by

pX→Y = min
(
1,

W(Y)
W(X)

AY→X

AX→Y

)
= min

1,
〈
ik

∣∣∣ b̂†lσb̂ jσ

∣∣∣ ĩk

〉 〈
ĩk

∣∣∣ b̂lσ

∣∣∣ ik+1

〉〈
ik

∣∣∣ b̂ jσ

∣∣∣ ik+1

〉 AY→X

AX→Y

 . (2.187)

Calling nlσ the occupation number on site lσ in the state |ik〉, this simplifies to

pX→Y = min
(
1, nlσ

AY→X

AX→Y

)
, (2.188)

where we still have to specify the proposal probability functions A. Suppose that in
a given state X, we propose with probability pinsk to insert an interaction. We then
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uniformly draw one of the neighboring sites, of which there are, in a hypercubic
lattice, zcoord = 2d in total. Furthermore, we have to specify in which time direction
we want to go after the kink was inserted. Putting all this together, we get for the
proposal probability AX→Y

AX→Y =
pinsk

2zcoord
. (2.189)

The inverse step Y → X corresponds to a worm head that stops at an interaction
that happens on the same site and layer, see step (3) in the summary of the move
update in the previous section. It is then proposed with probability pdel to actually
follow the interaction and thereby deleting it. So we simply have

AY→X = pdel. (2.190)

Hence the acceptance probability of inserting a kink finally becomes

pX→Y = min
(
1, 2nlσzcoord

pdel

pinsk

)
. (2.191)

In [55], two other consistent schemes are described to update between the state of
no interaction on site j at τint and the states where an interaction happens on j at τint,
but each time to a different adjacent site.

Deletion of an interaction

In order for our algorithm to be balanced, we need to include the inverse process
of the insertion of an interaction, namely its deletion. This corresponds to exactly
the inverse process shown in figure 2.19: the worm head b̂lσ halts at an interaction
b̂†lσb̂ jσ and can either stay on site lσ and proceed in imaginary time or it can follow
the interaction and hop to site jσ, effectively deleting the corresponding kink. The
weights and proposal functions can be obtained by simply interchanging X and Y

from the insertion update. The acceptance ratio is thus just the inverse of equation
(2.191),

pX→Y = min
(
1,

1
2nlσzcoord

pinsk

pdel

)
. (2.192)

Insertion and removal of an open worm

We still have to discuss how to go from closed worldline configurations out of the
partition function Z to open configurations from the Green function sector Ze and
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Figure 2.20: Pictorial representation of a worm insertion/removal. For insertion X →
Y , a random site jσ and a random time τins are drawn and a worm pair
is inserted. A removal Y → X is only possible if the worm head hits the
worm tail. We again consider the case of a worm head (right circle) b̂ jσ

moving in positive imaginary time direction.

back. This is achieved by the insertion and removal of a worm pair, see figure 2.20.

As in the previous examples, we consider the case of a worm head b̂ jσ moving in
positive imaginary time direction. Since we have the freedom to choose the value of
the worm matrix element [55], we are allowed to set the weight ratio to some constant
number C,

W(Y)
W(X)

= C. (2.193)

For insertion, we uniformly draw one of the Nsites = 3L2 sites (keep in mind that
the z-coordinate corresponds to the spin index σ) and an insertion time τins between
0 and β. Furthermore, we choose with probability 1/2 to go in positive or negative
imaginary time direction. At last, we have to specify if we insert a creation or an
annihilation worm, i.e. if the particle number between the worm ends is increased
or decreased by 1, respectively. This choice is also made with probability 1/2 for
both cases. Putting all this together, we get for the proposal probability to insert an
annihilation (creation) worm on iσ at τins that moves in a specific time direction

AX→Y =
1
2

1
2

1
βNsites

pinsw, (2.194)

where pinsw is the probability to acctually propose the insertion of a worm pair.

If, inversely, we are in an open worm configuration, we can freely determine a
probability pglue to propose the agglutination of both worm ends. Thus we write

AY→X = pglue. (2.195)
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The acceptance ratio for inserting a worm pair is then given by

pX→Y = min
(
1,

W(Y)
W(X)

AY→X

AX→Y

)
= min

(
1,C · 4βNsites

pglue

pinsw

)
, (2.196)

whereas the acceptance ratio to glue the worm ends is again just the inverse,

pY→X = min
(
1,

W(X)
W(Y)

AX→Y

AY→X

)
= min

(
1,

1
C · 4βNsites

pinsw

pglue

)
. (2.197)

One could, for example, choose C = pinsw/
(
4βNsites pglue

)
. This way, one would

accept every insertion and removal update. However, if the insertion of a worm pair
is rejected, the algorithm simply draws a new site and time and tries anew to insert a
worm pair. Since this is far from being performance critical, we do not loose much
if the acceptance probability for worm insertion is less than 1. In contrast, we should
always ensure that the acceptance probability of glueing the ends of a worm is always
equal to 1.

2.4.5.2 The trilayer system and ergodicity

In this section, we describe problems that occured concerning ergodicity using the
worm algorithm with a single worm and the updating procedures described above to
simulate the trilayer system given by the Hamiltonian in equation (2.28).

Pursuant to section 2.4.3.3, each spin distribution should be sampled according to
its Boltzmann weight in a reasonable amount of computation time. However, using
the worm algorithm with a single worm for the trilayer Hamiltonian (2.28) with the
updates described above, we observed anomalously large autocorrelation times τ ~̂F2 of

the (approximated) on-site magnetic moment ~̂F2 given in equation (2.30), so that the
system was essentially frozen in a more or less random spin state, highly dependent
on the initial state and the used sequence of random numbers. The configuration
space was therefore obviously not sampled in an ergodic way. The reason for this is
the absence of a direct Monte Carlo update which is capable to change the the on-site
spin distribution.

To get a precise understanding of the problem, let us consider a concrete example:
we go into the Mott limit, t

U0
→ 0, and tune µ such that we measure the density

ni = 〈n̂i〉 = 2 on each site. We choose U2 > 0,U2 � U0, i.e. we are in the antiferro-
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|ni+ ni0 ni−〉 ~F2

|200〉 , |002〉, |110〉 , |011〉 6

|020〉 4

|101〉 2

Table 2.1: ’Trilayer’ local magnetic moment ~F2 as defined in equation (2.30) for ev-
ery possible two-particle Fock state.

magnetic regime, where we expect that the spin interaction term

U2

2

Nsites∑
i=1

(
~̂F2

i − 2n̂i

)
=

=
U2

2

Nsites∑
i=1

(
n̂2

i+ − 2n̂i+n̂i− + n̂2
i− − n̂i+ − n̂i− + 2n̂i0n̂i+ + 2n̂i0n̂i−

)
, (2.198)

is minimized, which is realized by minimizing each local magnetic moment ~F2
i =〈

~̂F2
i

〉
separately under the condition that ni = 2 on each site. Only a few Fock states

are possible, see table 2.1.

Now let us see what the worm algorithm does in the considered example. We
usually start from the empty lattice state where all niσ = 0 and wait for thermalization.
In the very first step, a creation worm is inserted at a random site iσ. In the no-
hopping limit, we can be sure that it will never hop to any other site, thus it is only
propagating in imaginary time. The worm performs one (or more) time steps, wraps
around imaginary time dimension and finally bites in its own tail, which results in the
creation of a particle on site iσ. Then the next insertion site is drawn and the same
procedure happens again until there are two particles inserted on each (physical) site
i = ∪σiσ, where the spin layersσmainly depend on the sequence of random numbers.
Inserting a third particle on a single (physical) site i is energetically very costly (as
well as removing one to have only one particle on site i) in the considered regime of
large U0 and is therefore very unlikely to happen, especially for low temperatures.
Hence we end up at a state where ni =

∑
σ niσ = 2 on all (physical) sites i, but with a

random on-site spin distribution. Moreover, this spin distribution is now frozen: the
only way to change it is to remove a particle on site i with spin σ and to reinsert one
with a different spin σ′ 6= σ on the same site i. Such a process is very improbable to
happen. We either have to pass an intermediate state with ni = 1 or ni = 3, which are
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both exponentially suppressed due to their relative weight

W(ni = 3, 1)
W(ni = 2)

≈ exp
(
−β

U0

2

)
≈ 0, (2.199)

where we only considered the dominant on-site repulsion term in U0 in the no-
hopping limit. Even worse, if we want to go from the state with the second lowest
local magnetic moment |ni+, ni0, ni−〉 = |020〉 to the one with the lowest, |101〉, we
have to pass at least three such intermediate states (for example by going through the
states |020〉 → |010〉 → |011〉 → |001〉 → |101〉).

This problem was not only observed in the Mott limit t
U0
→ 0. It even extended

to the superfluid phase far from the Mott-to-superfluid phase boundary, where site
occupation number fluctuations are high.

2.4.5.3 Solution to the ergodicity problem

The only possibility to avoid the described problem in a single worm algorithm is to
introduce one or more Monte Carlo updates that are able to change the on-site spin
distribution without detour to states with different total on-site particle number ni.
We engineered two new kinds of updates, both working exclusively in the partition
function sector, where only closed worldlines are present.

The cutandpaste update

The cutandpaste update cuts, as the name suggests, closed worldlines out of the cur-
rent, closed worldline configuration and reinserts them in a random fashion to the
different spin layers, see figure 2.21.

The goal of the update is to propose a new on-site spin configuration without the
need of intermediate steps with different particle number ni as described above. To
this end, we draw a random site i where we want to change the distribution of spin
species (ni+, ni0, ni−) at imaginary time τ = 0. All the particle worldlines we cut are
crossing the spacetime point i, τ = 0, see figure 2.21. Unfortunately, since particles
can hop to their neighboring sites, the cutandpaste update is not capable to change the
spin distribution on site i alone. In order to maximize the Metropolis acceptance ratio
(2.152) of the proposed step, we yet have to try to find worldlines that ’lie on top of
each other’ as much as possible, meaning the more the particles are on the same site
at the same time, the higher will be the acceptance ratio of the proposed step.

We have to keep in mind the fact that the worldlines we cut are not uniquely defined
only by choosing the single point i, τ = 0 they have to cross. See for example the spin
0 layer on the left side of figure 2.21: we can either take the first or the second
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2.4 Monte Carlo simulations

Figure 2.21: Spin configurations on sites i − 1, i, i + 1 before (left) and after the cu-
tandpaste update. Cut-and-pasted worldlines are colored red. We start
at τ = 0 on site i and cut out worldlines in all layers that cross that
spacetime point. The choice of worldlines is not yet unique: at some
interactions, we can make the choice either to stay on the current site or
to follow the interaction. We decide that with the following rule: Follow
the interaction if (1) the distance to the start site i is shortened or (2) if
the particle number on the current site drops to zero after the interaction.

interaction from site i, 0 to site (i − 1), 0. As we preferably want to change the spin
configuration on site i, we choose the worldlines we cut using the following rules:

Cutting rules in the cutandpaste update:

(1) We always cut only one closed loop (worldline) with minimal particle number
at a time. It may be possible that a worldline winds more than one time
around imaginary dimension before it comes back again to the point i, τ =

0. Such a worldline has a particle number > 1, but can not be further split
up and has to be cutted as a whole.

(2) Go on in imaginary time on the current site till the next interaction is reached
that leaves the site.
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(3) Only follow an interaction if the distance to the starting site i is reduced. This
makes sure that we only cut worldlines on site i and its neighborhood. As
we are on a 2d-lattice, the distance h of two sites i and j is given by the
1-norm, h = |ix − jx| +

∣∣∣iy − jy

∣∣∣. If h does not decrease, stay on the current
site and proceed in imaginary time.

(4) If the particle number after an encountered interaction drops to zero, we are
forced to follow the interaction.

(5) If we hit the starting point i, τ = 0 again, we have found a closed worldline.

Next, we paste all cutted closed loops such that they again intersect the point i, τ =

0, but this time randomly distributed among the different spin layers. Care has to be
taken to set all particle numbers right.

In contrast to the worm updates described above, the cutandpaste update is nonlo-
cal. The computation of the Metropolis update ratio is thus more costly. The dulliest
way to compute it would be to calculate both the weight W(X) before and W(Y) after
the update completely. To do so, we would have to compute all interaction matrix
elements and all diagonal energies at all times in the system. Since the number of
interactions scales with βL2, this would be highly inefficient, especially for large sys-
tem sizes. But again, most of the factors cancel when we compute the weight ratio
W(Y)/W(X), namely those that do not change under the cutandpaste process.

We thus only keep track of the sites where the spin configuration changes during
the update. Only there, we compute the diagonal energies Eik and the matrix elements
〈ik|Ĥ1|ik+1〉 in both the original and proposed configurations X and Y .

The weight ratio can formally be written as

W(Y)
W(X)

=
∏

j

∏
k j

〈iY
k j−1
|Ĥ1|iY

k j
〉

〈iX
k j−1
|Ĥ1|iX

k j
〉

exp
(
−∆τk j∆Ek j

)
, (2.200)

where ∆τk j = τk j−τk j−1 is the period of time where the difference in diagonal energies
on site j is ∆Ek j = EY

k j
−EX

k j
. The index j runs over all sites involved in the cutandpaste

process and k j labels the interactions happening on site j.

As we do not use a priori probabilities for simplicity, the Metropolis acceptance
probability for the proposed step is

pX→Y = min
(
1,

W(Y)
W(X)

)
. (2.201)
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As one can imagine, the efficiency (i.e. the average acceptance ratio) of the cu-
tandpaste update is highly dependent on how closely the cutted worldlines lie on top
of each other, i.e. the corresponding particles have to share the same site as long as
possible. As for small t/U0, hoppings of particles are rare and many worldlines only
reside on a single site, see e.g. the red worldline in the spin up layer in the left column
of figure 2.21. If all cutted worldlines are of that kind, they perfectly lie on top of
each other. Hence, the cutandpaste update is fairly efficient in the regime U0 � t. In
contrast, for large t/U0 and high inverse temperature β, it becomes unprobable to find
worldlines that mainly stay on only a single site. Cutting out worldlines on a whole
cluster of neighboring sites simultaneously increases the acceptance ratio a little bit.
However, in the superfluid phase where t/U0 is of order 1, the update becomes badly
inefficient: we observe acceptance ratios of only about 10−4. Fortunately, changes in
spin state by the ordinary worm type updates occur much more often there because
the difference in energy for different site occupation numbers ni becomes smaller, cf.
section 2.4.5.2.

Furthermore, we implemented a second kind of closed configuration update called
layerswap which shows decent acceptance ratios in both regimes.

The layerswap update

As the name layerswap indicates, this update proposes a new distribution of the
present spin layers, see figure 2.22. We thus are able to potentially change the spin
of all particles at once. This kind of update shows quite high Metropolis acceptance
but, however, there is a drawback: with this update, we cannot perform transitions
like |ni+, ni0, ni−〉 = |n, 0, n〉 → |0, 2n, 0〉, which unfortunately happen to be the two
energetically lowest spin states for even densities in the antiferromagnetic regime. It
mainly lifts the sign symmetry of spins since the exchange of spin up with spin down
is always accepted with probability 1.

Concerning the weight ratio W(Y)/W(X), we can be sure that all hopping matrix
elements 〈ik|Ĥ1|ik+1〉 cancel out exactly. We thus only have to worry about the diag-
onal energies, where again only the spin interaction term can be different. Hence we
can write the weight ratio as

W(Y)
W(X)

=
∏

j

∏
k j

exp
(
−∆τk j∆Ek j

)
, (2.202)

where ∆τk j = τk j−τk j−1 is the period of time where the difference in diagonal energies
on site j is ∆Ek j = EY

k j
− EX

k j
. The index j runs over all (physical) sites of the system

and k j labels the time intervals with different diagonal energies on site j.
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Figure 2.22: Configurations on the sites i − 1, i, i + 1 before (left) and after the layer-
swap update. We exchange the layers as a whole: in the shown process,
each spin up particle turns into spin down, spin zero into spin up and
spin down into spin zero.

We do not use a priori probabilities on the redistribution of layers, so we once again
get the acceptance probability

pX→Y = min
(
1,

W(Y)
W(X)

)
. (2.203)

Again, we emphasize that the worm updates plus the layerswap update alone do not
lead to ergodicity: the layerswap process rather helps in avoiding problems occuring
due to the Z2-symmetry of spin states.

2.5 Error estimation and autocorrelation time

A major aspect of any Monte-Carlo method is the proper estimation of statistical
errors. We first consider the case of uncorrelated data and derive the central limit
theorem. Then, we have a look at correlated data and explain the concept of a binning
analysis to obtain reliable errorbars for correlated data sets.
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2.5.1 Uncorrelated data

Suppose that in our Monte-Carlo simulation, we have M uncorrelated measurements
of an observable A and we want to estimate how well the sample mean

Ā =
1
M

M∑
i=1

Ai

fits to the true expectation value 〈A〉. The statistical error ∆2
A is given by the root-

mean-square deviation of the sample mean Ā from the true expectation value 〈A〉
[56],

∆2
A =

〈(
Ā2 − 〈A〉

)2
〉

=
〈
Ā2

〉
− 〈A〉2 . (2.204)

We can rewrite
〈
Ā2

〉
as

〈
Ā2

〉
=

〈 1
M

M∑
i=1

Ai

2〉

=
1

M2

M∑
i, j=1

〈
AiA j

〉
=

1
M2

M∑
i=1

〈
A2

i

〉
+

M − 1
M

〈A〉2

=
1
M

〈
A2

〉
+

M − 1
M

〈A〉2 , (2.205)

where we used the fact that for independent samples i, j, the expectation value factor-
izes as〈

AiA j

〉
= 〈Ai〉

〈
A j

〉
= 〈A〉2 . (2.206)

We replace
〈
Ā2

〉
in equation (2.204) to get

∆2
A =

1
M

(〈
A2

〉
− 〈A〉2

)
=
σ2

A

M
. (2.207)

We see that the error ∆A for uncorrelated data goes with 1/
√

M, which is the heart of
the central limit theorem.

Usually, we do not know the underlying true variance σ2
A of the observable A.
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However, calling

A2 =
1
M

M∑
i=1

A2
i , (2.208)

we can connect the sample variance A2 − A
2

to the true variance σ2
A via〈

A2 − A
2
〉

=
M − 1

M
σ2

A, (2.209)

where we have made use of equation (2.205). The statistical error ∆A can thus be
rewritten as

∆A ≈

√
A2 − A

2

M − 1
, (2.210)

where the ’≈’ symbol accomodates for the fact that the sample variance we measure
does not in general equal its expectation value.

2.5.2 Correlated data

For correlated data, the independence condition in equation (2.206) does no longer
hold. The statistical error estimate is therefore

∆2
A =

1
M2

M∑
i, j=1

〈
AiA j

〉
− 〈A〉2 =

Var(A)
M

+
1

M2

M∑
i 6= j=1

(〈
AiA j

〉
− 〈A〉2

)
=

Var(A)
M

+
2

M2

M∑
i> j=1

(〈
AiA j

〉
− 〈A〉2

)
=

Var(A)
M

+
2

M2

M−1∑
t=1

(M − t)
(
〈A1A1+t〉 − 〈A〉2

)
=

Var(A)
M

1 + 2
M−1∑
t=1

(
1 −

t
M

)
φt

A

 , (2.211)

where we introduced the autocorrelation function φt
A [57]

φt
A =
〈A1A1+t〉 − 〈A〉2

Var(A)
. (2.212)
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For large M, the error ∆2
A may be rewritten as

∆2
A =

Var(A)
M

1 + 2
M−1∑
t=1

φt
A

 =
Var(A)

M
(1 + 2τA) , (2.213)

where we defined the autocorrelation time

τA =

∞∑
t=1

φt
A. (2.214)

The autocorrelation time τA plays an important role in the production of uncorrelated
data points out of a correlated data set: If we pick out n data points from our set of
size M that are 2τA apart, they can be considered to be uncorrelated [58].

However, estimating the autocorrelation time τA via the autocorrelation function
φt

A can be very costly. In the next section, we describe a fast and comfortable way to
estimate the error ∆A and the corresponding autocorrelation time τA.

2.5.3 Binning analysis

The binning analysis [56] is a simple method to estimate both the error ∆A and the
autocorrelation time τA of a set of correlated Monte-Carlo data.

It goes as follows: Of the original data A(0)
i = Ai, we repetitively create a new,

shorter data set by taking the mean of two successive data points,

A(l)
i =

1
2

(
A(l−1)

2i−1 + A(l)
2i

)
. (2.215)

Whilst the total mean value A(l) = A stays unchanged in each step l, the data points
become less and less correlated. At each iteration, we pretend that we already have
uncorrelated data and compute the error using equation (2.210)

∆
(l)
A =

√√
1

M(M − 1)

Ml∑
i=1

(
A(l)i − A

)2
, (2.216)

being well aware of the fact that we systematically underestimate the error in each
step due to the correlation of data points. However, as the data points get more and
more uncorrelated in each step, we should reach a limit for l→ ∞

∆A = lim
l→∞

∆
(l)
A , (2.217)

which is exactly the error if our data points would be completely uncorrelated. An
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Figure 2.23: Example of a binning analysis of some correlated data. We see the un-
correlated error estimate ∆

(l)
A from equation (2.216) plotted versus the

binning step l. It can be nicely observed how the limit ∆A is attained.

example of how this limit is reached is plotted in figure 2.23. One should stop the
binning analysis if the size Ml of the current data set is around 50. For smaller data
sets, the error estimations ∆

(l)
A become unprecise. From equation (2.213), we can

extract the autocorrelation time τA as

τA =
1
2

(
M∆2

A

Var(A)
− 1

)
, (2.218)

where Var(A) = A2 − A
2

is the usual sample variance of the data Ai.
There exist some more sophisticated methods of error estimation in correlated data

sets such as the jackknife procedure [59] and the bootstrap method [60], which are
not discussed here.
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CHAPTER 3

RESULTS

In this chapter, we present the results we obtained for the trilayer system using the
worm algorithm Quantum Monte Carlo simulation. We discuss the cases of ferro-
magnetic and antiferromagnetic interactions in two separate sections.

As we have seen in section 2.4.5, the worm algorithm not only correctly samples
the partition function Z, but also the Green’s function G given in equation (2.171).
Regrettably, as our simulation only uses a single worm, we are merely able to sample
the single-particle Green’s function Gσ(i, j, τ, τ0). However, important spin quantities,
starting with the spin projections onto the x- and y-axis, Fx and Fy, contain terms like
b̂iAσA b̂†jAσ′A b̂iBσB b̂†jBσ

′
B
, which can only be estimated by a sampling of the corresponding

four-point Green’s function. Hence, the computation of crucial observables such as
the equal time spin-spin correlation function

Fαα(~R) =
1
L2

∑
~r

〈F̂α,~rF̂α,~r+~R〉 α = x, y, z, (3.1)

the global magnetization [22]

F2
tot = L2

∑
α,~R

Fαα(~R) (3.2)

and the magnetic structure factor

S (~k) =
1
L2

∑
α,~R

ei~k·~RFαα(~R) (3.3)

are out of range of our simulation. As stated earlier, for the total magnetic moment
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〈
~̂F2〉 = 1

L2

∑
i〈
~̂F2

i 〉, we can only give the approximate value given in (2.30). This theo-
retically allows us to determine the associated approximate value of the zz-component
of the nematic order tensor given in equation (2.29),

Qzz = 〈F̂2
z −

1
3
~̂F2〉. (3.4)

To find magnetic transitions, we consider 〈F̂2
z 〉 and 〈 ~̂F2〉 as order parameters, where

the operators F̂2
z and ~̂F2 are both diagonal in spin occupation number basis |ni+, ni0, ni−〉.

On the other hand, order parameters for the Mott to superfluid phase transition are
fluctuations in total particle number ∼ 〈N2〉 − 〈N〉2 and the winding number squared
〈w2〉, to which we have access without any restriction.

Also, the diagonal energies Epot and Espin can simply be estimated by their sample
means of the simulated diagonal configurations at imaginary time τ = 0,

〈Êpot〉 =
1
M

M∑
k=1

Êk
pot, 〈Êspin〉 =

1
M

M∑
k=1

Êk
spin, (3.5)

where Êk
pot, Ê

k
spin are given by

Êk
pot =

U0

2

Ns∑
i=1

n̂k
i (n̂

k
i − 1), Êspin =

U2

2

Ns∑
i=1

(
~̂Fk

i

)2
− 2n̂k

i (3.6)

with the index k labeling the simulated diagonal configuration, Ns the number of
lattice sites and ~̂F2

i the approximated local magnetic moment on site i.
The kinetic energy

〈Êkin〉 = −t
∑
〈i, j〉,σ

〈b̂†i,σb̂ j,σ + b̂†j,σb̂i,σ〉 (3.7)

is a bit more subtle to obtain. We can estimate it either using the sampling of the
one-body Green’s function G given in equation (2.171), or we can make use of the
fact that it is given by

〈Êkin〉 =
Tr

[
e−βĤ Êkin

]
Tr

[
e−βĤ

] =
− t
β
∂tTr

[
e−βĤ

]
Tr

[
e−βĤ

] = −
t
β

1
M

M∑
k=1

nk, (3.8)

where nk is the expansion order of the simulated diagonal configuration, i.e. the
number of particle hoppings, see equation (2.169).
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Figure 3.1: The average approximated local magnetic moment 〈 ~̂F2〉 plotted versus the
average density ρ for L = 8, β = 8,U0 = 100,U2 = −0.1U0. As one can
see, 〈 ~̂F2〉 is equal to its maximal possible value indicated by the black
line.

3.1 The ferromagnetic case

We start the presentation of our Monte Carlo results with the case of ferromagnetic
interactions, U2 < 0. The mean field analysis of section 2.3.2 as well as previous
work [42, 22, 61] on the full spin-1 model suggests that the system shows saturated
ferromagnetism in the whole µ/U0 - t/U0-plane. This is exactly what we obtain in our
simulation, as can be seen in figure 3.1, where the average local magnetic moment
〈
~̂F2〉 =

∑Ns
i=1〈

~̂F2
i 〉 is plotted versus the total average density 〈ρ〉 =

∑
σ〈ρσ〉. For strong

interactions, 〈 ~̂F2〉 always equals its maximal possible value, which is given by linear
segments: if interactions are high, the energy of the system is minimized if we have
a fraction of (ρ − bρc) sites with bρc + 1 and a fraction of 1 − (ρ − bρc) sites with
bρc particles on it. These sites then contribute with (bρc + 1)(bρc + 2) respectively
bρc(bρc + 1) to the average magnetic moment, so we get

〈
~̂F2〉 = (2ρ − bρc)(1 + bρc), (3.9)

which is exactly the linear dependence we observe.

Figure 3.2 shows the equal-time two-point Green’s functions Gσ(R) in the canon-
ical ensemble for ρ = 1 and ρ = 2, where R is the lattice (1-norm) distance. We
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Figure 3.2: Equal time one-particle Green’s functions Gσ(R) in the ferromagnetic
case for different phases in the canonical ensemble, where R is the one-
norm distance between sites i and j, R = |ix − jx|+|iy − jy|. We see that the
Green’s functions are exponentially decaying in the insulating phase (no-
tice the log-scale). In the superfluid phase, the Green’s functions assume
a finite asymptotical value, which clearly shows long range order.

can clearly observe an exponential decay in the ρ = 1 and ρ = 2 Mott phases as ex-
pected, note the log-scale. In the superfluid phase, however, one can see long-range
order, which implies a strong movement of particles. Moreover, it can be seen that
we almost exclusively have spin ±1 particles in the superfluid phase, because Gσ(0)
is nothing else than the particle density of the spin species σ.

In figure 3.3, the particle density distributions P(ρ0), P(ρ±) of the different spin
particles are shown for distinct Mott and superfluid phases in the canonical ensemble.
In the Mott ρ = 1 phase 3.3a, the single-site Fock states |ni+, ni0, ni−〉 = |1, 0, 0〉,
|0, 1, 0〉 , |0, 0, 1〉 have the same spin interaction energies, hence the distributions P(ρ0)
and P(ρ±) appear quite similar. Since on rare occasions, double occupancies may
occur where the on-site Fock states |2, 0, 0〉,|0, 0, 2〉, |1, 1, 0〉, |0, 1, 1〉 have the lowest
spin interaction energy, we observe a few more σ = ±1 than σ = 0 particles.

In the ρ = 1 superfluid phase 3.3b, double or even higher occupancies are fre-
quent. Moreover, the kinetic energy Ekin is high. Since each hopping of a parti-
cle contributes to the thermodynamic weight approximately as ∼ ρσ (see equation
(2.169)), states with only one single spin species are preferred. Among those, the
states |ni+, 0, 0〉,|0, 0, ni−〉 are energetically cheapest for now very often occuring dou-
ble or higher occupancies. Hence we almost exclusively observe σ = ±1 particles.
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(a) Mott phase, ρ = 1, t/U0 = 0.02
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(b) Superfluid phase, ρ = 1, t/U0 = 0.1
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(c) Mott phase, ρ = 2, t/U0 = 0.02
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Figure 3.3: Density distributions for Mott and superfluid phases in the ferromagnetic
case U2 = −0.1U0 with β = 5, L = 10 in the canonical ensemble for all
diagrams. See text for explanations.

In the ρ = 2 Mott phase 3.3c, the on-site states |2, 0, 0〉,|0, 0, 2〉,|1, 1, 0〉,|0, 1, 1〉 are
the states with lowest spin interaction energy. Hence we would expect that P(ρ+) =

P(ρ−) ≈ 3/4, P(ρ0) ≈ 1/2 at sufficiently low temperatures. However, again due
to kinetic energy and higher occupancies, the distribution is shifted towards more
σ = ±1 particles.

In the ρ = 2 superfluid phase 3.3d, we again observe almost exclusively spin up
and down particles. This happens for complete analogous reasons as in the ρ = 1
superfluid case. Since on-site spin interaction energies go like ∼ ni(ni + 1), triple or
higher occupancies are consequently more favoured than in the ρ = 1 case and the
separation of P(ρ0) and P(ρ±) distributions gets even more pronounced.
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Figure 3.4: Total particle density 〈ρ〉 and superfluid density 〈ρs f 〉 as a function of
the chemical potential µ/U0 for t/U0 = 0.02, L = 10, β = 5 in the
ferromagnetic case U2 = −0.1U0. One can clearly observe the first two
Mott plateaux, where the total particle density 〈ρ〉 assumes an integer
value and both the compressibility κ =

∂〈ρ〉

∂µ
and the superfluid density

ρs f vanish. All phase transitions are of second order. The solid black line
shows the mean-field condensate density 〈ρMF

c 〉 as a check for the location
of phase transitions. However, the mean-field analysis predicts first-order
transitions between superfluid phases and the second Mott phase for β =

5.

3.1.1 Phase transitions

Let us first consider generic phase transitions in the grand canonical ensemble, where
we vary the chemical potential µ/U0 and therefore the total particle number 〈N〉 of
the system. In figure 3.4, we see the total particle density 〈ρ〉 =

∑
σ〈ρσ〉 and the

superfluid density 〈ρs f 〉 as a function of the reduced chemical potential µ/U0. We
observe the common Mott plateaux, where the superfluid density ρs f as well as the
compressibility κ =

∂〈ρ〉

∂µ
vanish and the total density ρ takes on integer values. Al-

though the mean-field solution suggests first order transitions between the superfluid
and the second Mott phase at β = 5 and the given interactions, they appear continu-
ous in the Monte Carlo simulation. However, in the proximity of the tips of the Mott
lobes, first order transitions happen.

Figure 3.5 shows the z-component of the local magnetic moment squared, 〈F̂2
z 〉 =

1
L2

∑
i〈(ni+ − ni−)2〉 and the winding number squared 〈w2〉 which is an order parameter
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Figure 3.5: Phase transitions crossing the tip of the first 3.5a and second 3.5b Mott
lobe for ferromagnetic interactions at fixed densities ρ = 1 and ρ = 2, re-
spectively. Plotted are 〈F̂2

z 〉 = 1
L2

∑
i〈(ni+ − ni−)2〉 and the winding number

squared 〈w2〉 as an order parameter for the insulating to superfluid transi-
tion as a function of t/U0 for L = 8, β = 4, U2 = −0.1U0. For both lobes,
the MI-SF transition appears first order.

for the insulator to superfluid transition, as a function of t/U0 in the canonical ensem-
ble, crossing the tip of the ρ = 1 3.5a and ρ = 2 lobe 3.5b. Both Mott to superfluid
transitions give the appearance of being first order and seem to happen at the same
critical value (t/U0)c as the transition in spin configuration measured by 〈F̂2

z 〉.

In the Mott limit of the ρ = 1 case, the single-site Fock states |ni+, ni0, ni−〉 =

|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉 are degenerate, hence 〈F̂2
z 〉 = 2/3. As hoppings of a spin σ

particle contribute to the thermodynamic weight with a factor ∼ 〈ρσ〉, see equation
(2.169), the system prefers to be in a state with particles of only one kind of spin
σ. Thus, in the ferromagnetic case in the limit of t/U0 → ∞, the whole system
contains either σ = +1 or σ = −1 particles. This lift of degeneracy from |1, 0, 0〉,
|0, 1, 0〉,|0, 0, 1〉 states in the no-hopping limit to either |1, 0, 0〉 or |0, 0, 1〉 states on
every site of the system is the transition we observe in 〈F̂2

z 〉. Since 〈F̂2
z,i〉 = 1 for a site

i occupied with a particle of spin σ = ±1, we measure 〈F̂2
z 〉 ≥ 1, where 1 is only a

lower bound because possible of higher occupanices.

For ρ = 2, the on-site two-particle states |ni+, ni0, ni−〉 = |2, 0, 0〉, |0, 0, 2〉, |1, 1, 0〉
and |0, 1, 1〉 share the same, minimal spin interaction energy in the ferromagnetic case.
In the no-hopping limit, we thus get 〈F̂2

z 〉 ≈ 2.5. As in the superfluid limit it is again
favoured to have only particles of a single spin species, it is clear that the system will
be filled with either only 2L2 spin up or spin down particles, hence 〈F̂2

z 〉 ≥ 4, where
the equal sign applies if there are exactly 2 particles on each lattice site. Since higher
occpancies may occur, this is just a lower boundary.

The magnetic moment 〈 ~̂F2〉 always assumes its maximal possible value of ρ(ρ+ 1)
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Figure 3.6: Ground state phase boundaries of the first Mott lobe of the trilayer sys-
tem for the ferromagnetic interaction strength U2 = −0.1U0. The blue
line represents the Monte-Carlo result obtained via finite-size scaling, the
black line shows the corresponding mean-field solution we obtained in
section 2.3.2.2. As expected, the two lines meet in the no-hopping limit
t/U0 = 0, whereas there is a quite big disagreement for the tips of both
lobes.

(cf. equation (3.9)) in the Mott phases. For weak interactions, it is slightly larger due
higher occupancies. However, there is no sharp phase transition.

3.1.2 Phase diagram

We compute the ground state phase diagram in the thermodynamic limit by a finite-
size scaling analysis as described in section 2.2.3. As this is computationally expen-
sive, we content outselves with the computation of only the first Mott lobe, which
can be seen in figure 3.6. The blue line shows the Mott to superfluid phase boundary,
which is fitted to the data points that are shown with errorbars. The fine black line
is the corresponding mean-field result we obtained in section 2.3.2.2. As expected,
both results match in the limit of zero hopping t/U0 → 0. However, the tips of both
lobes differ quite much, which was also observed for the full spin-1 system in [22].
Around the tip of the lobe, transitions appear first order for low enough temperatures
due to a change in spin configuration, as we have seen in figure 3.5. However, the first
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order transitions are blurred out at higher temperatures and finite-size scaling stays
possible.
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Figure 3.7: Equal time two-point Green’s functions Gσ(R) for different phases in the
antiferromagnetic case, with R again the 1-norm distance. We again ob-
serve exponential decay in the Mott phases, whereas there is clear long-
range order in the superfluid phase.

3.2 The antiferromagnetic case

In the antiferromagnetic case U2 > 0, the spin interaction energy is minimized by
minimizing the approximate local magnetic moment ~F2

i for each lattice site i. For
ni = 1, the three single-site Fock states |ni+, ni0, ni−〉 = |1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉 have
the same spin interaction energy because they all share the same magnetic moment
~F2

i = 2. Since the states |1, 0, 0〉,|0, 0, 1〉 have F2
z,i = (ni+ − ni−)2 = 1, whereas the state

|0, 1, 0〉 has F2
z,i = 0, the thermodynamic average of this quantity in the Mott limit is

〈F2
z 〉 = 2/3.

In figure 3.7, the equal-time Green’s functions G0(R),G±(R) in the canonical en-
semble for ρ = 1 and ρ = 2 are shown for the antiferromagnetic case of U2 =

0.1U0 > 0, where R is the 1-norm distance. As in the ferromagnetic case, we see ex-
ponential decay in the Mott insulating phases and long-range order in the superfluid.
However, the superfluid almost exclusively consists of σ = 0 particles, in contrast to
the ferromagnetic case, where we observe almost only σ = ±1 particles.

Figure 3.8 shows the particle density distributions P(ρ0), P(ρ±) in the the antiferro-
magnetic case U2 = 0.1U0 for different phases in the canonical ensemble with ρ = 1
and ρ = 2. For ρ = 1, the on-site Fock states |ni+, ni0, ni−〉 = |1, 0, 0〉, |0, 1, 0〉,|0, 0, 1〉
have the same spin interaction energy. Hence the spin σ = ±1 and σ = 0 distributions
are similar in the ρ = 1 Mott phase 3.8a, similar to the ferromagnetic case in figure
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(c) Mott phase, ρ = 2, t/U0 = 0.02
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(d) Superfluid phase, ρ = 2, t/U0 = 0.125

Figure 3.8: Density distributions of different spin species for Mott insulating and su-
perfluid phases in the antiferromagnetic regime U2 = 0.1U0 in the canon-
ical ensemble, with β = 5, L = 10 for all diagrams. See text for explana-
tions.

3.3a.

In the ρ = 1 superfluid phase 3.8b, we effectively observe only σ = 0 particles.
As explained above, states with one single spin species are favoured in superfluid
phases. Double occupancies are frequent, and among the on-site Fock states with
a single kind of spin particles, the state |0, 2, 0〉 has lowest spin energy. Hence we
almost only observe σ = 0 particles.

For the ρ = 2 superfluid case 3.8d, the same explanation holds. As energy differ-
ences between different on-site spin states generally increase with increasing particle
density, the distributions are even sharper.

In the ρ = 2 Mott phase 3.8c, there are almost exclusively σ = ±1 particles.
This is simply due to the fact that the energetically cheapest on-site Fock state is
|ni+, ni0, ni−〉 = |1, 0, 1〉, and particle hoppings and hence double occupancies are rare.
However, we will see in the next section that for weak spin interactions U2, a phase
transition happens from the |1, 0, 1〉 to the |0, 2, 0〉 state inside of the second Mott
lobe. In that case, the density probability distributions P(ρ0), P(ρ±) would resemble
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Figure 3.9: Total particle density 〈ρ〉 and superfluid density 〈ρs f 〉 as a function of the
chemical potential µ/U0 for t/U0 = 0.02, L = 10, β = 5. We can again
observe Mott insulating phases with integer particle density 〈ρ〉, vanishing
compressibility κ =

∂ρ

∂µ
= 0 and zero superfluid density 〈ρs f 〉 = 0. All

transitions are of second order, as predicted by mean-field methods. The
fine black line indicates the mean-field condensate density 〈ρMF

c 〉.

the ones of the ρ = 2 superfluid phase, figure 3.8d.
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Figure 3.10: Phase transitions crossing the tip of the first Mott lobe in the canoni-
cal ensemble for different antiferromagnetic spin interaction strengths
U2 > 0. Shown is the average z-component of the local magnetic mo-
ment squared 〈F̂2

z 〉 and the winding number squared 〈w2〉 as the order
parameter for the Mott to superfluid transition, both plotted versus t

U0
.

System parameters where L = 10, β = 5, ρ = 1.

3.2.1 Phase transitions

In the antiferromagnetic case, the generic Mott to superfluid transition is of second
order for strong interactions U0, as we can see in figure 3.9, where we plotted the
total particle density 〈ρ〉 and the superfluid density 〈ρs f 〉 versus the chemical potential
µ/U0. However, compared to the ferromagnetic case in figure 3.4, transitions appear
much steeper. Indeed, first order transitions occur for U0 . 30, since the two on-
site spin states |ni+, ni0, ni−〉 = |1, 0, 1〉 , |0, 2, 0〉 approximately have the same energy,
because the kinetic energy in the |0, 2, 0〉 state is lower, as hoppings contribute to the
thermodynamic weight as ∼ 〈ρσ〉. We observed the metastability of both states, but
where not able to resolve a clear first order boundary for generic transitions, because
to this end, temperatures have to be very low to avoid admixture of the energetically
higher metastable state. In turn, low temperatures mean high computational resources
since the extended configuration space grows with β.

Let us focus next on canonical phase transitions. In image 3.10, we see the square
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of the z-projection of the local magnetic moment 〈F̂2
z 〉 and the winding number 〈w2〉

plotted versus t/U0 for different antiferromagnetic spin interaction strengths U2. For
the smallest spin interaction U2 = 0.001U0 shown in figure 3.10a, the insulator to
superfluid transition with the order parameter winding number squared 〈w2〉 appears
to be of second order, and no phase transition in spin state can be observed for the
chosen temperature.

However, if we increase spin interactions to be U2 = 0.005U0, as shown in figure
3.10b, a phase transition occurs with order parameter 〈F̂2

z 〉 directly before the Mott
to superfluid transition. This corresponds to a transition from the degenerate single-
site Fock states |ni+, ni0, ni−〉 = |1, 0, 0〉,|0, 1, 0〉,|0, 0, 1〉, which we observe with equal
probability in the Mott limit, to the on-site state |0, 1, 0〉. Once again, in the superfluid
phase, states with only one spin component are preferred. Of such states, double
occupancies have lowest spin energy if both particles have spin σ = 0, hence there
has to be a spin transition between Mott and superfluid limits.

If we further increase the spin interaction to U2 = 0.1U0 as depicted in figure
3.10c, both the insulator to superfluid and the spin transition appear very steep and
at the same critical calue of t/U0. The strong spin interaction highly suppresses dou-
ble occupancies in the Mott insulating phase. At some point, interactions are weak
enough that double occupancies may happen, but almost exclusively of |0, 2, 0〉 type.
Hence all of a sudden, we only observe σ = 0 particles and so 〈F̂2

z 〉 drops to zero. As
we are then in a state with a single spin species, particle hoppings contribute with a
higher weight and therefore happen more often, which is the reason for the transition
from the insulating to the superfluid state. In some sense, these two effects enhance
each other, which is why both transitions appear to happen at the same critical value.

For very strong spin interactions like U2 = 0.3U0 as shown in figure 3.10d, the
most probable double occupancies are of |ni+, ni0, ni−〉 = |1, 0, 1〉 type, since this state
has the lowest magnetic moment. That means that at the Mott to superfluid transition,
the system not yet prefers a state with only a single kind of spin particles as above.
However, as we further increase t/U0, it becomes more and more favorable to have
all particles in a single hyperfine state, which is σ = 0.

The sudden transition around the tip of the Mott lobe for U2 ≈ 0.1U0 made the
finite-size scaling computations of the zero temperature phase boundaries quite dif-
ficult. However, using relatively high temperatures of β = 1 . . . 5 weakens the spin
transitions and increases particle number fluctuations so that finite size scaling is still
applicable.

Next, we consider the canonical phase transition crossing the tip of the second Mott
lobe for various spin interaction strengths U2. In figure 3.11, we see the approximated
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Figure 3.11: Phase transitions crossing the peak of the ρ = 2 Mott lobe in the canon-
ical ensemble for different antiferromagnetic spin interactions U2 > 0.
The blue line shows the average local magnetic moment 〈 ~̂F2〉, whereas
the red line indicates the superfluid to Mott insulator transition order pa-
rameter winding number squared 〈w2〉, both as a function of t

U0
. System

sizes where L = 8, β = 16, ρ = 2 in all four cases.

local magnetic moment 〈 ~̂F2〉 = 1
L2

∑
i〈
~̂F2

i 〉 and the average winding number squared
〈w2〉 as a function of t/U0 in the canonical case ρ = 2. For ni = 2, the state with
the lowest spin energy on site i is given by |ni+, ni0, ni−〉 = |1, 0, 1〉 with the local
magnetic moment 〈 ~F2

i 〉 = 2, which is what we obtain for each antiferromagnetic spin
interaction U2 > 0 in the limit of zero temperature and strong interactions, t/U0 → 0.

However, if spin interactions are very small, as shown in figure 3.11a for the case
U2 = 0.001U0, the system undergoes a phase transition from the |1, 0, 1〉 to the |0, 2, 0〉
state already deep in the insulating phase, since states with one single spin species are
preferred because of particle hoppings, as explained above. Due to this transition, the
local magnetic moment jumps discontinuously from 〈 ~̂F2〉 = 2 to 〈 ~̂F2〉 = 4, see figures
3.11a and 3.11b. It is a remarkable fact that this transition happens at a considerably
different critical point in comparison to the Mott to superfluid transition for small spin
interactions.

As expected, with increasing spin interaction strength U2, the spin transition is
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shifted towards stronger relative hopping t/U0, since the difference in spin interac-
tion energy between |1, 0, 1〉 and |0, 2, 0〉 is increased with increasing U2. As can be
seen in figure 3.11c for the case U2 = 0.1U0, the spin transition at some point hap-
pens around the same critical point as the insulator to superfluid transition. As the
spin transition itself is notably smoothed out, the MI-SF transition remains of second
order. However, it can be observed in figures 3.11c and 3.11d that stronger spin in-
teractions considerably enlarge the second Mott lobe to higher values of t/U0, due to
the low pairing energy of |1, 0, 1〉 states.

The smoothing of the 〈 ~̂F2〉 transition may however be an effect of finite tempera-
ture, since in the critical regions of figures 3.11c and 3.11d, we observe phase coex-
istence of |1, 0, 1〉 and |0, 2, 0〉 states. This is a strong indication of an underlying first
order transition, where both spin states are metastable and mixed up by finite β.

In turn, the metastability of |1, 0, 1〉 and |0, 2, 0〉 spin states up to the Mott to super-
fluid transition leads to the overshooting of 〈 ~̂F2〉, clearly visible at the critical point
in figure 3.11c. Particle hoppings are frequent, which leads to higher occupancies,
mainly of |ni+, ni0, ni−〉 = |1, 2, 0〉, |0, 2, 1〉 type, where 〈 ~̂F2

i 〉 = 10, hence the mean
value 〈 ~̂F2〉 increases. In the limit of strong t/U0, the system almost exclusively con-
tains σ = 0 particles. Higher occupancies are thus always of |0, 3, 0〉 type, where
〈
~̂F2

i 〉 = 6. At fixed density ρ = 2, such a triple occupancy always comes in pair with
a single occupancy |0, 1, 0〉, where 〈 ~̂F2

i 〉 = 2. Hence in the superfluid limit, 〈 ~̂F2〉 = 4
for all antiferromagnetic interactions U2 > 0 in the low temperature limit.
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Figure 3.12: Ground state phase boundaries of the first Mott lobe for antiferromag-
netic interactions U2 = 0.1U0. The blue line indicates the phase bound-
aries obtained by finite size scaling, whereas the black line represents the
mean-field solution obtained in section 2.3.2.2. At the tip of the lobe, a
first order transition from 〈F̂2

z 〉 = 2/3 to 〈F̂2
z 〉 = 0 occurs. For strong

interactions, transitions are second order.

3.2.2 Phase diagram

Since we obtain the ground state phase diagram by a finite size scaling analysis 2.2.3
which is computationally very costly, we confine ourselves to the calculation of the
first Mott lobe only. The result is depicted in figure 3.12, where the blue line indicates
the phase boundary obtained by Monte Carlo. The black line shows the mean-field
phase boundary obtained in section 2.3.2.2. Unsurprisingly, the two solutions match
best for small hopping t/U0 → 0, where mean-field theory is exact.

For strong interactions, transitions are of second order, as can also be seen in figure
3.9. Around the tip of the lobe, transitions appear first order and a sharp transition
from 〈F̂2

z 〉 = 2/3 to 〈F̂2
z 〉 = 0 occurs for low enough temperatures. However, if we

take temperatures of about β ≈ 1, the spin transitions are smoothed out and finite-size
scaling remains possible.
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CHAPTER 4

CONCLUSION AND OUTLOOK

4.1 Conclusion

In this work, we investigated the Bose-Hubbard model for atoms with total angular
momentum F = 1 and unfixed magnetic quantum number σ = mF = −1 . . . 1. We
gave a theoretical background on optical lattices and the emergence of the Bose-
Hubbard Hamiltonian thereout, as well as on phase transitions and the method of
finite-size scaling for transitions of second order.

A mean-field solution was performed for both the full spin-1 Bose-Hubbard model
and what we call the trilayer model, which is given by the same Hamiltonian, except
for the off-diagonal spin-flip terms. We computed the mean-field phase diagrams for
both systems in ferromagnetic and antiferromagnetic regimes. Magnetic properties
were examined for the full spin-1 system and previously obtained results (e.g. of
[36, 37]) have been confirmed.

We gave a self-contained summary of the worm algorithm for the Bose-Hubbard
model, and introduced the layerswap and cutandpaste update schemes, which were
necessary to preserve ergodicity in the Monte-Carlo simulation of the trilayer system.

Our Monte-Carlo results include the one-particle Green’s functions for Mott and
superfluid phases and density distributions of all spin species. Phase transitions where
investigated for finite-size systems both in the canonical and grand-canonical en-
semble. Using finite-size scaling techniques, we obtained the first Mott lobe of the
ground-state phase diagram for ferromagnetic and antiferromagnetic interactions.

During our Monte-Carlo studies, it became apparent that the conventional worm
algorithm as it is used for the Bose-Hubbard model with scalar bosons is not capable
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to sample the configuration space of the trilayer system in an ergodic way. The reason
for this needs to be further investigated, but it seems that configurations that are close
in energy should be connected by direct Monte-Carlo updates. Potentially, this might
imply that the worm algorithm may generally be faced to similar problems in systems
with first order boundaries, where the distinct metastable states are equal in energy,
but may eventually be well separated in configuration space. If there is no direct
update between these states and the probabilities of connecting Markov chains are
small (i.e. essential intermediate states are improbable), the simulation will get stuck
in one of the metastable states, dependent on the initial state and the sequence of
random numbers used.

In order to bypass this problem for the trilayer system, we were forced to intro-
duce the two new updates layerswap and cutandpaste, of which only the latter is able
to fully restore ergodicity. Since these two updates are nonlocal, they are computa-
tionally very costly. Moreover, acceptance ratios of the cutandpaste update tend to
be very low in superfluid phases, so our simulations were constrained to only small
system sizes.

However, our Monte-Carlo studies show that spin transitions do not necessarily
have to coincide with the Mott to superfluid transition in the trilayer model, as was
already observed for the full spin-1 system in [22]. As the difference of critical values
of both transitions is more pronounced in the trilayer system, it may help to get a clear
understanding of the singlet to nematic transition in the full spin-1 Bose-Hubbard
model, where a similar separation occurs.

4.2 Outlook: Worm algorithm with multiple worms

As we have seen, the negligance of the spin flip terms b̂†i+b̂†i−b̂i0b̂i0, b̂†i0b̂†i0b̂i+b̂i− in the
Hamiltonian (2.28) leads to large phenomenological differences between the full spin-
1 Bose-Hubbard model (2.25) and the system that we have called the trilayer model.
Since an experimental equivalence to this model does not exist, a further investigation
does not seem to be very attractive. Only the layerswap update developed in section
2.4.5.3 might poteltially be useful for a worm algorithm [11, 12] simulation of the
full spin-1 Bose-Hubbard model, since it can solve ergodicity problems occuring due
to the Z2 of spin states in ferromagnetic phases.

In order to include the spin flip terms b̂†i+b̂†i−b̂i0b̂i0, b̂†i0b̂†i0b̂i+b̂i− into the worm al-
gorithmic Monte-Carlo simulation, it is indispensable to introduce a second worm
propagating in the now further enlarged extended configuration space. The corre-
sponding four-point Green’s function of a configuration with two open worms A and
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B in the system is then written as

G
(
iAσA, jAσ

′
A, τA, τ0,A, iBσB, jBσ

′
B, τB, τ0,B

)
=

〈
T̂τb̂iAσA

(
τ0,A

)
b̂†jAσ′A (τA) b̂iBσB

(
τ0,B

)
b̂†jBσ

′
B

(τB)
〉

= Tr
[
T̂τb̂iAσA

(
τ0,A

)
b̂†jAσ′A (τA) b̂iBσB

(
τ0,B

)
b̂†jBσ

′
B

(τB) e−βĤ
]
, (4.1)

and, in complete analogy to section 2.4.5, we define the extended partition function
as the sum over all possible Green functions,

Ze =

∞∑
n=0

∑
|i1〉,...,|in〉

∑
(iσ)A,( jσ)A

∑
(iσ)B,( jσ)B

∫ β

0
dτn . . .

∫ τ2

0
dτ1W, (4.2)

where the configuration weights W now have the form

W = 〈i1| Ĥ1 |i2〉 · e−(τ2−τ1)Ei2 · 〈i2| Ĥ1 |i3〉 · e−(τ3−τ2)Ei3 ·

. . . · ·e−(τk−τk−1)Eik 〈ik| b̂
†

iAσA
|ik+1〉 · . . . · e−(τl−τl−1)Eil 〈il| b̂ jAσ′A |il+1〉 ·

. . . · e−(τm−τm−1)Eim 〈im| b̂
†

iBσB
|im+1〉 · . . . · e−(τp−τp−1)Eip

〈
ip

∣∣∣ b̂ jBσ
′
B

∣∣∣ip+1

〉
·

. . . · e−(τn−τn−1)En 〈in| Ĥ1 |i1〉 e−(β−τn+τ1)Ei1 . (4.3)

We recall that all interaction matrix elements as well as all worm operators have
to be ordered in imaginary time. Again, we are free to move all four worm ends
through configuration space, respecting detailed balance in each Monte-Carlo step.
A particularly efficient choice of which worm ends are set to stay at rest and which
ones are mobile has not been figured out yet.

Collecting again all diagonal terms in Ĥ0 leads to the same diagonal energies Eik

we already had in the trilayer system. However, the sum of all off-diagonal terms we
put into Ĥ1 is now extended to be

Ĥ1 = −
∑
〈i, j〉,σ

(
b̂†i,σb̂ j,σ + b̂†j,σb̂i,σ

)
+ U2

∑
i

(
b̂†i+b̂†i−b̂i0b̂i0 + b̂†i0b̂†i0b̂i+b̂i−

)
. (4.4)

Hence, in the partition function Z given in equation (2.169), there now appear matrix
elements of Ĥ1 that correspond to spin-flip processes. It is precisely the sampling of
these spin-flip matrix elements that is the reason why we need to have two worms
simultaneously propagating through the extended configuration space.

Assuming that we have chosen the two worm ends b̂iAσA , b̂iBσB as the two mobile
ends of the worms, we now work out the update weight of the insertion of a spin flip
as shown in figure 4.1.
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Figure 4.1: Graphical illustration of a spin flip process. The two worm heads b̂iAσA ,
b̂iBσB have to meet at the same site iA = iB at the same time τA = τB = τins.
The spins have to be either both zero, σA = σB = 0, or, as depicted in the
figure, σA = +, σB = −. Then, a spin flip can be inserted so that the worm
head spin indices change like (σA = +, σB = −)↔ (σA = 0, σB = 0). The
infinitesimal time step dτ is only included to fix the time ordering between
the worm heads and the spin flip.

To insert a spin flip like b̂†i0b̂†i0b̂i+b̂i−, it is necessary that the two worm heads b̂iAσA ,
b̂iBσB meet at the same site iA = iB = i to the same time τA = τB = τins, and the two
spins have to have the values σA = +, σB = − or vice versa. The relevant factors of
the corresponding weights of the configurations W(X) and W(Y) before and after the
spin flip process depicted in figure 4.1 are given by

W(X) = e−τinsEik

〈
ik

∣∣∣ b̂i+b̂i−

∣∣∣ ik+1

〉
eτinsEik+1 ,

W(Y) = e−τinsEik

〈
ik

∣∣∣ b̂†i0b̂†i0b̂i+b̂i−

∣∣∣ ĩk

〉
eτinsEĩk

−(τins+dτ)Eĩk

〈
ĩk

∣∣∣ b̂i0b̂i0

∣∣∣ ik+1

〉
e(τins+dτ)Eik+1 .

(4.5)

As we only included the infinitesimal time step dτ to fix the time ordering between
worm heads and the spin flip, we can safely set it to zero so that the acceptance
probability becomes

pX→Y = min
(
1,

W(Y)
W(X)

AY→X

AX→Y

)
= min

1,
〈
ik

∣∣∣ b̂†i0b̂†i0b̂i+b̂i−

∣∣∣ ĩk

〉 〈
ĩk

∣∣∣ b̂i0b̂i0

∣∣∣ ik+1

〉〈
ik

∣∣∣ b̂i+b̂i−

∣∣∣ ik+1

〉 AY→X

AX→Y

 , (4.6)

where AX→Y denotes the proposal probability to go from configuration X to configu-
ration Y . Calling ni0 the occupation number of spin σ = 0 particles on site i in the
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state |ik〉, this may be rewritten as

pX→Y = min
(
1, ni0(ni0 − 1)

AY→X

AX→Y

)
. (4.7)

As each spin flip is unique (there is always only a single possibility of how to flip),
AX→Y , AY→X are truly the probabilities with which we propose the insertion pinsertflip

or deletion pdeleteflip of a spin flip, respectively.
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