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Abstract

We resolve T 6/Z3 orbifold singularities with Gauged Linear Sigma Models
(GLSMs) and describe the factorizable underlying six-torus T 2 × T 2 × T 2

as the intersection set of three elliptic curves in a projective space. Divisors
are given as hypersurface equations that depend on the chosen resolution
model. We determine intersection numbers in an algebraic way counting
the solutions to the equation system formed by the elliptic curves defining
the six-torus and the hypersurface constraints of the corresponding divisors.
This procedure is extended to various resolution phases in the so-called
minimal fully resolvable model.
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Chapter 1

Introduction

To date, there are four known fundamental interactions in physics that lay
down the laws of every physical process we can observe. Namely, these inter-
actions are Electromagnetism, Weak and Strong interactions and Gravity.
Particle physics can be described very accurately by a quantum theory of
fields which is called the Standard Model (SM). This theory arises from
some Lagrangian possessing a local gauge invariance under the gauge group
GSM = SU(3)C ×SU(2)L×U(1)Y . Each of these gauge group factors gives
rise to so-called gauge bosons which are spin 1 particles mediating a corre-
sponding fundamental interaction: The QCD gauge group SU(3)C creates
the eight gluons which carry the strong force gluing together the quarks in
every atomic nucleus. The last two factors SU(2)L × U(1)Y generate the
massive W± and Z0 bosons and the photon γ, which describe the weak
interaction and quantum electrodynamics, the quantum theory of electro-
magnetism, in a unified framework called electroweak theory.

Gravitational interactions ar best described within Einsteins theory of
General Relativity (GR). It explains gravity in a geometrical way assuming
our four-dimensional spacetime to be curved. The Standard Model and Gen-
eral Relativity, considered both seperately on very small and very big length
scales respectively, can describe almost every observable physical process by
an accuracy that is higher than what we can experimentally confirm.

At high energies, however, there have to be physical processes that both
involve gravitational and quantum field theoretical effects at the same time,
so we have to find a quantized theory of gravity. But, with our present knowl-
edge, this is impossible: a quantum field theory of gravity would require an
infinite number of counter terms and is thus a non-predictive theory.

The aim of string theory is nothing less than finding a unified theory of
gravity and the other three fundamental interactions we know. It is probable
that such a theory will explain all physical processes in our universe based on
a very few number of axioms and free parameters. Thus, in popular science,
it is often referred to as the ”theory of everything” or ”final theory”, meaning
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8 CHAPTER 1. INTRODUCTION

that it has the potential to explain the laws of nature how they really are,
and not just to give a very accurate description of the processes we see.

The basic concept of string theory is that elementary particles do not
correspond to point-like, but to tiny one-dimensional objects that can carry
various vibration modes, comparable to the vibrating string of a violin. A
crucial point is that such a theory is only consistent in 10 or 26 spacetime
dimensions, whereas the latter case comes along with tachyons which are
particles that move faster than the speed of light. Thus, it is more likely
that string models in 10 spacetime dimensions are potential descriptions of
the physics in our universe.

An open question is how to ”hide” the six extra dimensions so that we
can not observe them in our everyday life. We consider the 10-dimesional
spacetimeM10 to be factorized into the two partsM10 =M4⊗M6, where
M4 represents the ordinary four-dimensional Minkowskian spacetime and
M6 corresponds to the space of the further six dimensions the theory must
have. A very direct way to hide these extra dimensions is to compactify
them, that means to give them a finite and small enough volume. The
easiest compact space one can imagine is a flat torus, where we simply
endow all the coordinates with periodical identifications.

Another possibility is to consider M6 to be a so-called orbifold, which
we will explain in the subsequent section. Orbifold compactifications lead
to a much more realistic phenomenology concerning spacetime and gauge
symmetry breaking [3] than a torus compactification does. As we will see
soon, each orbifold possesses so-called orbifold fixed points. Since it is im-
possible to define geometrical quantities like a metric on these points, they
form singularities that have to be resolved for a proper description of string
propagation in this space.

The resolution of such orbifold singularities form one main part of this
work. A Gauged Linear Sigma Model naturally leads to constraints (the so-
called D-term constraints) that exclude orbifold singularities from the target
space for some specific values of free FI-parameters present in this model.
Since the resolution depends on the value of these free parameters, one can
investigate the resolution procedure in a continuous manner. In both the
resolved and the non-resolved orbifold one can define real codimension 2
hypersurfaces which are called divisors. Another main part is to determine
how often these divisors intersect with each other, i.e. how many points
lie in the intersection set of dim(M6)

2 = 3 such divisors. We will see that
intersection numbers can change going from one resolution phase to another,
i.e. varying the free FI-parameters from one specific regime to another.

In chapter 2, we discuss some basic properties of orbifolds, in partic-
ular of T 2/Z3 and T 6/Z3. Furthermore, we present the basics of Gauged
Linear Sigma Models (GLSMs) which can be used to resolve orbifold sin-
gularities. In chapter 3, we describe another orbifold resolution procedure
which is based on toric geometry as it was done in [9]. It is also possible
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to compute intersection numbers using this resolution method. Finally, in
chapter 4, we use GLSM methods to resolve the T 6/Z3 orbifold in different
so-called resolution models and compute intersection numbers in resolved
and non-resolved phases. For example, we give the intersection numbers of
various phases of the minimal fully resolvable model and even compute an
intersection number of a T 6/Z3 orbifold on a non-factorized E6 torus lattice.





Chapter 2

Background material

2.1 The T 2/Z3 and T 6/Z3 orbifolds

An orbifold is a generalized manifold. One of the main properties of a
manifold of dimension n is that it locally looks like an open subset of Rn.
Without giving any rigorous mathematical definition, an orbifold can be
seen as a manifold that can not in general locally be described by an open
subset of Rn but by a quotient by a finite group thereof.

Let us consider the T 2/Z3 orbifold. To describe this orbifold we introduce
the coordinate u ∈ C. In order to obtain a two-torus T 2, we have to make
the periodic identifications

u ∼ u+ 1, u ∼ u+ τ, (2.1)

with some complex structure τ , Im(τ) 6= 0.
Next, we divide out the Z3-orbifold action θ. This means we have to

perform a further identification, namely

θ : u ∼ ζu, ζ = e
2πi
3 . (2.2)

This further symmetry constrains the possible values of the complex struc-
ture τ of the underlying two-torus T 2. The torus lattice given by

Λ = {m+ nτ | m,n ∈ Z} (2.3)

has to be invariant under the orbifold action θ. It is not hard to show
that τ = ζ is a possible choice for the complex strucutre τ . This is all
we need to define T 2/Z3. We see that there are points that are invariant
under the orbifold action: if we take for example the point u = f1 = 0, it
is obvious that it does not change under the action (2.2). Furthermore, the

points u = f2 = 1
2 +

√
3

6 i = ζ+2
3 and u = f3 =

√
3

3 i = 2 ζ+2
3 are invariant

under combinations of the orbifold action (2.2) and the torus symmetries
(2.1). These so-called orbifold fixed points are plotted as red spots in figure

11
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A'o A

A''o

A'o,T
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f3

Figure 2.1: The T 2/Z3 orbifold. The red points are the orbifold fixed points.
As an example, we marked the point A and its images under the orbifold
action, A′o and A′′o . Using the torus identifications (2.1), we can map them
back to the torus we started and obtain the points A′o,T and A′′o,T .

2.1. Since it is impossible to define geometrical quantities like a metric at
such orbifold fixed points, they correspond to orbifold singularities. It is the
aim of every orbifold resolution process to smooth out these singularities.
Further information on orbifolds can be found in the literature, for example
in [4], [5].

To have a coordinate description of T 2/Z3 where the torus symmetries
(2.1) are already built-in (i.e. where points that are identified by (2.1) have
the same coordinates), we map our coordinate u to an elliptic curve in a
projective space P2

1,1,1 in the next section.

2.1.1 The Weierstraß mapping

Two-dimensional tori can nicely be described by elliptic curves in a weighted
projective space P2

p,q,1. A two-torus with the periodic identifications u ∼
u + 1 ∼ u + τ is mapped in such a weighted projective space using the
Weierstraß function ℘τ (u). We review just some of the main properties of
this function here, further details can be found in textbooks, for example in
[6].

The Weierstraß function ℘τ (u) is a double periodic complex function
℘τ (u) : C→ C with the periocities ℘τ (u) = ℘τ (u+ 1) = ℘τ (u+ τ) for some
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complex structure τ . An explicit form is given by the expansion

℘τ (u) =
1

u2
+

∑
(m,n)6=(0,0)

{
1

(u+m+ nτ)2
− 1

(m+ nτ)2

}
. (2.4)

We see that this is simply the function 1/u2 which becomes invariant under
the lattice Λ = {λ = m+ nτ | m,n ∈ Z} by adding each term of 1/û2, where
u = û mod λ, λ ∈ Λ. The terms − 1

(m+nτ)2
are needed for the series to be

convergent.
The first derivative of the Weierstraß ℘-function is

℘′τ (u) = −2
∑
m,n

1

(u+m+ nτ)3
. (2.5)

This function solves the Weierstraß differential equation

[℘′τ ]2(u) = 4℘3
τ (u) + f(τ)℘τ (u)− g(τ), (2.6)

where the functions f(τ) and g(τ) are

f(τ) = 4(ε1ε2 + ε1ε3 + ε2ε3), g(τ) = 4ε1ε2ε3. (2.7)

We call ε1 = ℘τ (1/2), ε2 = ℘τ ( τ2 ) and ε3 = ℘τ (1+τ
2 ).

A weighted projective space P2
p,q,1 has three homogeneous coordinates

(x, y, v). Hence at first sight this looks as we intend to perform a mapping
with one complex degree of freedom u in the domain to three (x, y, v) in the
image space. But since we map to a weighted projective space, we have a
C∗-symmetry acting on the coordinates as

C∗ : (x, y, v) ∼ (λpx, λqy, λv), λ ∈ C∗ = C\{0}, (2.8)

reducing the number of degrees of freedom in the image space from 3 to 2.
To construct an isomorphism from our two-torus to an elliptic curve in a
weighted projective space, there can not be a dimensional mismatch. There-
fore, we perform a mapping using ℘τ (u) and its derivative ℘′τ (u) whereby
we can use (2.6) as a further constraint reducing our image space dimension
from 2 to 1, which makes an isomorphism possible.

The concrete case: T 2/Z3

As mentioned above, in the T 2/Z3 case, a possible choice for the complex
structure is τ = ζ = e2πi/3. Furthermore, it turns out that the function f(τ)
in (2.7) is zero. The mapping from T 2

τ=ζ → P2
1,1,1 can be performed by [7]

u→ (x, y, v) =


(
℘ζ(u), ε

−1/2
1 ℘′ζ(u)/2, ε1

)
, away from lattice points,

(0, 1, 0) on the lattice, u ∈ Λ,(
2ε

1/2
1 ℘ζ(u)
℘′ζ(u)

, 1,
2ε

3/2
1

℘′ζ(u)

)
close to lattice points.

(2.9)
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The Weierstraß differential equation (2.6) then takes the form

y2v = x3 − v3. (2.10)

By a linear change of coordinates this can be brought to a form where the
Z3-symmetries are manifest. This is done by [7]z1

z2

z3

 =

−1 0 0
0 1√

3
1

0 − 1√
3

1


 x

2−1/3y

2−1/3v

 , (2.11)

which brings (2.10) to the form

z3
1 + z3

2 + z3
3 = 0. (2.12)

We will mostly use these coordinates for the rest of this work.
In this description we immediately see three independent Z3 actions,

namely zi → ζzi, i = 1, 2, 3. However, we choose our basis of Z3-actions to
be

C∗ : (z1, z2, z3)→ (ζz1, ζz2, ζz3),

θ : (z1, z2, z3)→ (ζz1, z2, z3), (2.13)

α : (z1, z2, z3)→ (z1, ζ
2z2, ζz3).

The first symmetry is already contained in the C∗ symmetry of the weighted
projective space P2

1,1,1 we are in, so this action does not carry any further
information. Using the relations ℘ζ(ζu) = ζ℘ζ(u) and ℘′ζ(ζu) = ℘′ζ(u), it is
not hard to identify the second one as the orbifold action θ : u→ ζu, simply
by mapping ζu into our new coordinates. The third action is a bit more
subtle but has been identified in Appendix A.2 of [7] to be the so-called
3-volution α that acts as u→ u+ ζ−1

3 .
We see that, if we mod out the Z3 orbifold action θ only, the three

orbifold fixed points ui = i · ζ+2
3 , i = 0, 1, 2 are obtained in Weierstraß

coordinates by setting z1 to zero, because points fulfilling that condition are
invariant under the action θ given in (2.13). To see that we have indeed
3 orbifold fixed points, we compute the solutions to the C∗ invariant term(
z2
z3

)3
= −1. They are given by z2

z3
= −ζn, n = 0, 1, 2. Hence we exactly get

3 orbifold fixed points.
Contrary, if we mod out the actions θ and α together, we have all the

three actions of (2.13) which form a basis of Z3-actions on the coordinates
zi. We are free to change this basis of Z3-actions back to

θi : zi → ζzi, i = 1, 2, 3, (2.14)

where it is obvious that the three orbifold fixed points (the fixed points
under these actions) are given by zi = 0, i = 1, 2 or 3.
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We can also mod out the 3-volution action α only. Since the action α
changes the phase of the two coordinates z2, z3 simultaneously, we have to
set them both to zero to get the fixed points under this action, z2 = z3 = 0.
Because of (2.12), this directly entails that also z1 = 0. But the point
z1 = z2 = z3 = 0 is excluded from the projective space P2

1,1,1, so we have
produced a contradiction. This means that there are no fixed points under
the 3-volution α only, which we already knew because α acts free on the
coordinates u as the shift u→ u+ ζ−1

3 .

Generalization to T 6/Z3

The generalization of this choice of coordinates to a six-dimensional torus
T 6 = T 2 × T 2 × T 2 is easy: instead of one complex coordinate u describing
our torus, we now have three of them, all satisfying the equivalence relations
ua ∼ ua + 1 ∼ ua + τ, a = 1, 2, 3. The orbifold action θ then can be
introduced as

θ : (u1, u2, u3)→ (ζu1, ζu2, ζu3) (2.15)

and the 3-volutions αa (now there are three 3-volutions possible, each one
acting independently on one of the coordinates ua) are

αa : ua → ua +
ζ − 1

3
. (2.16)

We simply map every coordinate ua as before to obtain the set of equations

z3
a1 + z3

a2 + z3
a3 = 0, a = 1, 2, 3, (2.17)

describing our T 6 with complex structure τ = ζ. Analogously to the two-
dimensional case, the orbifold action θ takes the form

θ : (z11, z21, z31)→ (ζz11, ζz21, ζz31), (2.18)

and the 3-volutions look like

αa : (za1, za2, za3)→ (za1, ζ
2za2, ζza3), (2.19)

where it is important to note that there is only one Z3 orbifold action θ
acting on all the three two-tori simultaneously. So we indeed get a T 6/Z3

orbifold. We must not confuse T 6/Z3 with
(
T 2/Z3

)3
, where we would have

three Z3 orbifold actions θi acting independently on the three two-tori as

θi : zi → ζzi, i = 1, 2 or 3.

An orbifold fixed point must again fulfill the conditions we already had
for T 2/Z3: za1 = 0, za2

za3
= −ζna ∀a = 1, 2, 3 if we divide out the orbifold

action θ only and zana = 0, ∀a = 1, 2, 3 when we divide out both the actions
θ and αa. So in each two-torus we have three possibilities, na = 1, 2 or 3.
Thus, using simple combinatorics, we see that T 6/Z3 has 3 · 3 · 3 = 27 fixed
points.
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2.2 Orbifold resolutions with Gauged Linear Sigma
Models

We consider a gauged linear sigma model with (2, 2) supersymmetry where
the Lagrangian can be written as the sum [8]

L = Lkin + LW + Lgauge + LD,θ, (2.20)

with Lkin the kinetic energy of the chiral superfields, LW the superpotential
interaction, Lgauge the kinetic energy of the gauge fields and LD,θ a Fayet-
Iliopoulos term and θ-angle.

The kinetic term Lkin has the form

Lkin =

∫
d4θZ̄Z, (2.21)

with the chiral superfield Z,

Z = z + θαΨα + θαθαF. (2.22)

To obtain a local U(1) gauge invariant form under the gauge transfor-
mation Z → eiAZ with the chiral superfield A = A(xµ, θ±, θ̄±) [12], we have
to add a factor eV in between Z̄ and Z,

Lkin =

∫
d4θZ̄eV Z. (2.23)

In order to get the local U(1) gauge symmetry, the field V has to be a real
superfield V (xµ, θ±, θ̄±) that transforms as

V → V + i(Ā−A). (2.24)

In Wess-Zumino gauge, such a field V can be expanded in the superspace
coordinates θ [12] as

V = θ−θ̄−(v0 − v1) + θ+θ̄+(v0 + v1)− θ−θ̄+σ − θ+θ̄−σ̄+ (2.25)

+ iθ−θ+(θ̄−λ̄− + θ̄+λ̄+) + iθ̄+θ̄−(θ−λ− + θ+λ+)+

+ θ−θ+θ̄+θ̄−D,

where v0, v1 are vector fields, σ is a complex scalar field, λ±, λ̄± are fermionic
fields and D is a real scalar field.

So the superspace integral for Lkin in (2.23) can be evaluated to [12]

Lkin =

∫
d4θZ̄eV Z = −Dµz̄Dµz + iΨ̄−(D0 +D1)Ψ−+ (2.26)

+ iΨ̄+(D0 −D1)Ψ+ +D|z|2 + |F |2 − |σ|2|z|2 − Ψ̄−σΨ++

− Ψ̄+σ̄Ψ− − iz̄λ−Ψ+ + iz̄λ+Ψ− + iΨ̄+λ̄−z − iΨ̄−λ̄+z,



2.2. GLSM ORBIFOLD RESOLUTIONS 17

where Dµ denotes the covariant derivative, Dµ := ∂µ + ivµ.

Analogously, the components Lgauge and LD,θ can be written as [12]

Lgauge =
1

2e2
(−∂µσ̄∂µσ + iλ̄−(∂0 + ∂1)λ−+ (2.27)

+ iλ̄+(∂0 − ∂1)λ+ + (∂0v1 − ∂1v0)2 +D2),

LD,θ = −bD + θ(∂0v1 − ∂1v0), (2.28)

where e2 is the coupling constant which has mass dimension 1. b is a Fayet-
Iliopoulos parameter and θ the theta-angle, which must not be confused
with any superspace coordinate.

Making use of the equations of motion, we can get rid of the fields D
and F in L = Lkin + Lgauge + LD,θ [12]. We get

L = −Dµz̄Dµz + iΨ̄−(D0 +D1)Ψ− + iΨ̄+(D0 −D1)Ψ++ (2.29)

− e2

2
(|z|2 − b)2 − |σ|2|z|2 − Ψ̄−σΨ+ − Ψ̄+σ̄Ψ−+

− iz̄λ−Ψ+ + iz̄λ+Ψ− + iΨ̄+λ̄−z − iΨ̄−λ̄+z+

+
1

2e2
(−∂µσ̄∂µσ + iλ̄−(∂0 + ∂1)λ−+

+ iλ̄+(∂0 − ∂1)λ+ + (∂0v1 − ∂1v0)2) + θ(∂0v1 − ∂1v0),

where we identify the potential energy of the scalar fields σ and z

U =
e2

2
(|z|2 − b)2 + |σ|2|z|2. (2.30)

Generalizing that to the case of multiple charged chiral superfields Za
and considering a nonvanishing interaction potential contribution

LW =

∫
d2θW (Za) + c.c. =

|m|2

2

(∣∣∣∣∂W∂zi
∣∣∣∣2 +

∂2W

∂zi∂zj
Ψ−,iΨ+,j

)
+ c.c.,

(2.31)
we get [12]

U ∼ e2

2

(∑
a

qa |za|2 − b

)2

+ |m|2
∑
a

|Wa|2, (2.32)

where the charge qa of a chiral superfield Za means that it transforms as
Za → eiqaAZa and Wa = ∂W

∂za
.

Since string theory is a scale invariant theory but e and m are dimen-
sionful quantities, we have to take the conformal limit e,m → ∞. This on
the other hand leads to the constraints∑

a

qa |za|2 − b = 0 (2.33)
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Superfield Z1 Z2 Z3 X
U(1) charge q 1 1 1 -3

Table 2.1: Charge assignment for the C3/Z3 orbifold GLSM resolution

and

Wa =
∂W

∂za
= 0. (2.34)

These are the so-called D- and F-term constraints, respectively.
It is a crucial point that the complex scalar components of the chiral

superfields are interpreted as target space coordinates. This is why we can
use the superpotential W to reproduce the torus-defining equations (2.17)
in the F-term constraints.

2.2.1 GLSM resolution of the C3/Z3 orbifold

To see how the GLSM resolution process works, we consider the noncompact
C3/Z3 orbifold as a simple example. Since all the 27 orbifold singularities
of T 6/Z3, which we will investigate lateron, locally look like C3/Z3, it is a
very appropriate example to begin with.

The C3/Z3 orbifold is described by (z1, z2, z3) ∈ C3 divided by a discrete
Z3 orbifold action θ,

θ : (z1, z2, z3) ∼ (ζz1, ζz2, ζz3). (2.35)

We introduce the chiral superfields Zi, i = 1, 2, 3 and interpret their scalar
components as target space coordinates. To implement the orbifold symme-
try, we have to endow the fields Zi with equal charges m. Since this would
modify the target space dimension, we have to add a new chiral superfield X
with the charge −

∑
m to our resolution process. Furthermore, this allows

us to construct the orbifold symmetries we want to have. The charge as-
signment is given in table 2.1. From the charge assignment we can directly
read off the D-term constraint

D : |z1|2 + |z2|2 + |z3|2 − 3|x|2 = b. (2.36)

Now everything depends on the value of the FI-parameter b.

b < 0: The orbifold phase

For b < 0, the exceptional coordinate x (the scalar component of the added
chiral superfield X ) has to have a vacuum expectation value (VEV), hence
we are able to gauge fix its U(1) phase making use of the gauge freedom

x ∼ e−3·2πiφx, zi ∼ e2πiφzi, i = 1, 2, 3. (2.37)
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Suppose we gauge fix the phase of x to some definite value. We are free to
write this as {

x ∼ e−3·2πiφx |e−3·2πiφ !
= 1
}
. (2.38)

This means that φ = n
3 , n ∈ Z. So there is still a Z3 gauge-freedom left over

on the zi coordinates, namely

zi ∼ e2πin
3 zi i = 1, 2, 3. (2.39)

This is nothing other than the orbifold action (2.35), hence this phase is
called the orbifold phase.

b > 0: The blow-up phase

In this phase, because of the D-term constraint (2.36), at least one zi has
to be nonzero. Thus the orbifold singularity (z1, z2, z3) = (0, 0, 0) is not
existent anymore in the blow-up phase, the orbifold singularity has been
resolved. To be precise, if we assume that x = 0, it has been blown-up to a
5-sphere S5 whose size is controlled by the parameter b,

b = |z1|2 + |z2|2 + |z3|2. (2.40)

All points within this sphere are excluded from the target space, whereas all
the outlying points are accessible. We can easily see this looking at (2.36)
again:

b+ 3|x|2 = |z1|2 + |z2|2 + |z3|2.

This equation allows for points lying on the sphere with radius b described
in (2.40) for x = 0, but also for points that lie on a sphere with radius
b′ = b+ 3|x|2 > b for x 6= 0. Hence all points at the outside of the sphere in
(2.40) are allowed because x is a free coordinate without any upper limit.

In the limit b↘ 0 we get the C3/Z3-orbifold with the orbifold fixed point
excluded,

(
C3/Z3

)
\{0}.

2.2.2 Divisors

A divisor is a complex codimension 1 hypersurface living in an orbifold. In
[9], three different types of divisors were specified. The ordinary divisors,
denoted Dai, correspond to hypersurfaces where we fix one complex coordi-
nate to the value of an orbifold fixed point. The inherited divisors Ra also
fix one of the three orbifold coordinates to a definite value, but this time
away from any orbifold fixed point. Furthermore, there are the so-called
exceptional divisors E, which arise in the resolution process of the orbifold
singularities. In the GLSM language, the exceptional divisors E correspond
to zeros of the exceptional coordinates x, x = 0.

Not all divisors are existent in every GLSM phase. We have seen for
example that in the orbifold phase of C3/Z3, the D-term constraint forces
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the exceptional coordinate x to be nonzero. Hence the exceptional divisor
E := {x = 0} can not exist in this phase.

Two divisors are said to be linear equivalent if all their topological quan-
tities are equal. In [10] and [9], the equivalence relations between Di and E
for C3/Z3 are given by

E ∼ −3Di, Di ∼ Dj . (2.41)

Using Poincaré duality, one can show that linear equivalent divisors have
the same intersection number with any arbitrary curve C, i.e.

if A ∼ B then AC = BC, (2.42)

in which with AC we mean the intersection number of divisor A with the
curve C. Such equivalence relations will be a very important tool to compute
triple intersection numbers of divisors lateron.

To clarify the notation, we have to note that the multiplication of a divi-
sor A with a scalar n means nothing other than it has the same intersection
numbers with all curves C as A multiplied with n, so that we can write for
any curve C

if B ∼ n ·A then BC = n ·AC. (2.43)

2.2.3 Fully resolvable GLSMs

A toroidal orbifold in general can contain more than just one orbifold fixed
point. So generally, there are often more than one exceptional gauging
possible to resolve all orbifold singularities. The resolution procedure where
the maximum number of exceptional gaugings are performed is called the
maximal fully resolvable model. In [7] it has been used to resolve T 6/Z3,
T 6/Z4 and T 6/Z6−II .

The other extremal case is the so-called minimal fully resolvable model,
where only a minimal number of exceptional gaugings is introduced to re-
solve all orbifold singularities. Since the number of D- and F-term con-
straints increase with the number of exceptional gaugings, the minimal fully
resolvable model might be a bit more handy because it contains less FI-
parameters than the maximal fully resolvable model. For example, in T 6/Z3,
only one gauging is required to resolve all its 27 orbifold singularities at once.
The minimal fully resolvable model was first stated in [11].

Of course, there are often also fully resolvable models with less excep-
tional gaugings as in the maximal fully resolvable model but more as in the
minimal one. However, it is a very important and quite surprising fact that
a model with the same gauging as in the minimal fully resolvable model plus
some additional gaugings normally is not fully resolvable anymore. One al-
ways has to check if all orbifold singularities vanish in the blow-up phase. If
only some of them are resolved, the model is called partially resolvable. We
will restrict ourselves to fully resolvable models in the rest of this work.
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2.2.4 Phase structure

As we have already seen in the resolution of C3/Z3, GLSM orbifold res-
olutions possess a certain phase structure depending on which values the
corresponding FI-parameters may take. The effect of a transition between
such phases is a rather big one: the target space topology changes. For some
values the target space might be a singular orbifold whereas for others it is
a resolved smooth Calabi-Yau. There is even a phase where the F-term con-
traints force all coordinates z to be zero, hence the target space collapses to
a point there. This is a major advantage of the GLSM resolution procedure
since it describes these phase transitions smoothly by varying the associated
parameters.

One can classify the effects of a phase transition in the following three
groups [7]:

1. The intersection set of two divisors may change. This of course also
means that triple intersection numbers can change.

2. Divisors may be existent in certain phases, whereas in others they
vanish. For example, the exceptional divisor of C3/Z3 is existent in
the blow-up phase, but has to vanish in the orbifold phase, since x has
to have a VEV there.

3. Even the target space dimension can be modified. As already said,
we can have an orbifold in one phase which collapses to a point in
another.

We will compute the triple intersection numbers of divisors in T 6/Z3 in
various phases in a subsequent section.

2.2.5 Torus lattices

A torus lattice is described by a set of vectors which realize the torus sym-
metries of an orbifold. For example, a two-torus with the identifications
u ∼ u+ 1 ∼ u+ τ with some complex structure τ has the R2 basis vectors(

1
0

)
and

(
Re(τ)
Im(τ)

)
. Hence points differing by an integer combination of

lattice vectors are identified.
A six-dimensional torus lattice for ua ∼ ua+1 ∼ ua+τa can be described

analogously. It is factorized to A2×A2×A2 if there is no other action than
the orbifold symmetry θ acting on more than one of the two-tori T2 spanned
by each coordinate ua. In contrast, there are resolution models for T 6/Z3

that involve 3-volution symmetries that act in more than just one of such
two-tori simultaneously. This leads to non-factorized lattices such as F4×A2

or E6. In Appendix B of [7] it is shown that one can factorize these lattices
to A3

2 again. Lateron, we will compute the intersection number of R1R2R3

of T 6/Z3 on a non-factorized E6 lattice.





Chapter 3

Orbifold resolutions and
intersection numbers with
toric geometry

Before we start the main part of this work, namely the GLSM resolution
of T 6/Z3 and the computation of intersection numbers of divisors living
therein, we take a look at the work of [9]. There, toric geometry was used
to resolve orbifold singularities and to compute intersection numbers. In
particular, we will exemplarily show how to resolve orbifold singularities
that locally look like C3/Z3 and C3/Z6−I . Afterwards the nonvanishing
intersection numbers of the T 6/Z3 orbifold will be computed explicitly. It is
the main aim of the following chapters to reproduce the intersection numbers
that were found in [9].

3.1 Toric varieties

To begin with, we need to have a definition of what is called a toric variety.

Definition 1 (Toric variety) A toric variety X is a complex algebraic va-
riety containing an algebraic torus T = (C∗)r as a dense open set, together
with an action of T on X whose restriction to T ⊂ X is just the usual
multiplication on T [12].

Technically, this means that a toric variety can be described as

XΣ = (Cd\FΣ)/ (C∗)r , (3.1)

which says that this is the d-dimensional complex space with r independent
C∗ symmetries. For the toric variety to be well defined, we have to exclude
the set FΣ of points that are fixed under any continuous subgroup of (C∗)r.
FΣ is therefore called the fixed point set.

23



24 CHAPTER 3. TORIC GEOMETRY

A toric variety can be entirely described by an auxiliary object called a
fan. To give the definition of a fan, we need to introduce a lattice N ∼= Zd−r.
We call NR = N ⊗ R.

Definition 2 (Cone) A strongly convex rational polyhedral cone σ ⊂ NR
is defined as the set

σ = {a1v1 + a2v2 + ...+ akvk|ai ≥ 0} (3.2)

with a finite set of vectors v1, ..., vk and σ ∩ (−σ) = {0} (strong convexity)
[14].

From now on, ”strongly convex rational polyhedral cone” will simply be
abbreviated by ”cone”.

Definition 3 (Fan) A fan Σ is a set of cones in NR which satisfy the
conditions

1. each face of a cone in Σ is also a cone in Σ,

2. the intersection of two cones in Σ is a face of each.

To get a feeling for these definitions, let us see a simple example:

cone σ

cone σ'

v1

v2
v1'

v2'

Figure 3.1: Two cones σ and σ′ generated by v1, v2 and v′1, v
′
2 in a lattice

N ∼= Z2

If the cone σ = {a1v1 + a2v2|ai ≥ 0} is a cone in Σ,

• so are the cones σ1 = {b1v1|b1 ≥ 0} and σ2 = {b2v2|b2 ≥ 0} (rule 1).
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• the cone σ′ can not be in Σ because the intersection σ ∩ σ′ is not a
face of each cone (rule 2).

Note that every k - dimensional cone σ ∈ Σ generated by v1, ..., vk is
associated to the codimension k subvariety

Xσ = {z ∈ XΣ|z1 = ... = zk = 0}. (3.3)

In particular, the generators vi of the fan Σ correspond to the set of di-
visors in XΣ. Furthermore, there is a correspondence between vi and the
homogeneous coordinate zi.

To find the components of the vectors vi, we look at

Φ : Cd → Cn : (z1, ..., zd)→ (
d∏
i=1

z
v1i
i , ...,

d∏
i=1

z
vni
i ), (3.4)

with vji denoting the j-th component of the vector vi. This defines a map
from the covering space Cd\FΣ to the toric variety XΣ. Clearly, such a map
has to be invariant under the (C∗)r symmetry of XΣ. This means that a
(C∗)r symmetry like

(z1, ..., zn) ∼ (λ
Q

(a)
1

a z1, ..., λ
Q

(a)
n

a zn), a = 1, ..., r (3.5)

generically leads to ∑
i

Q
(a)
i vki = 0. (3.6)

Discrete orbifold symmetry groups G generated by

θ : (z1, ..., zn) ∼ (εz1, ε
p1z2, ..., ε

pn−1zn), ε = e2πi/p (3.7)

are analogously translated to

vk1 + p1v
k
2 + ...+ pn−1v

k
n = 0 mod p (3.8)

3.2 Local resolutions of orbifold singularities

A fixed point of a three-dimensional orbifold locally looks like C3/G, with
some finite group G. With the means of toric geometry, such a singular-
ity can be resolved obtaining a toric variety like (3.1). The corresponding
resolution process is described in this section.

For C3/G singularities, (3.8) becomes

vk1 + p1v
k
2 + p2v

k
3 = 0 mod p.

From [9] we know that the last component of every vector vi in Σ has
to be 1 except of the vector v0 = (0, 0, 0). This implies that XΣ has trivial
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canonical class and is Calabi-Yau [9]. One can show that XΣ is smooth if
all top-dimensional cones in Σ have volume 1. In the unresolved orbifold,
however, there is just one top-dimensional cone spanned by v1, v2, v3 which
has a volume of |G|, so the orbifold is singular.

This is where the resolution process comes into play: we add to the
generators of the fan Σ all the lattice points wi that lie in between the points
v1, v2, v3 and fulfill the Calabi - Yau condition that the last component of
each vector has to be 1, i.e. w3

i = 1. To these generators wi, we associate the
exceptional coordinate yi and the corresponding exceptional divisor Ei. All
the possible top-dimensional cones of the resulting fan Σ̃ now have volume
1, hence the resulting toric variety XΣ̃ is smooth. Since there are now more
than three generators at our disposal, there are often multiple possibilities to
form the resolved fan Σ̃, i.e. to construct a set of cones out of the generators
that fulfill the fan conditions of definition 3. This ambiguity in forming
the resolved fan is associated to different possible triangulations in the toric
diagram. These various possibilities only differ in their exclusion set FΣ̃

which is obtained as follows: Take all vi, wj that do not span a cone in Σ̃.
Then all points that have zeros in the associated coordinates (zi, yj) = 0
belong to the exclusion set FΣ̃ of the toric variety XΣ̃.

In the GLSM language, the exclusion set FΣ translates to some FI-
parameter b > 0 of a blown-up orbifold that excludes zeros of some set of
coordinates by the corresponding D-term constraint. For example, in C3/Z3

the only existing D-term constraint is

|z1|2 + |z2|2 + |z3|2 − 3|x|2 = b. (3.9)

So obviously, in the blow-up phase where b > 0, the coordinates z1, z2, z3

can not vanish all together. Hence the point (z1, z2, z3) = (0, 0, 0) forms the
exclusion set FΣ of C3/Z3. As we will see, the corresponding generators
v1, v2, v3 indeed never share a cone in the resolution of C3/Z3.

3.2.1 The Mori-cone

The relevant data of a toric variety can be compactly summarized using a
so-called (P |Q)-Matrix, in which the rows of P are the vectors vi, wj and

the a-th column of Q are the Q
(a)
i from (3.5). Obviously, there is still an

ambiguity left on the vectors Q(a). To visualize this, take for example a
(C∗)2 - action that acts as

(z1, z2, z3, y1) ∼ (λ1z1, λ2z2, λ1λ2z3,
1

λ2
1λ

2
2

y1).

This translates to the vectors Q(1) = (1, 0, 1,−2) and Q(2) = (0, 1, 1,−2).
Exact the same (C∗)2 symmetry can be described by renaming for example
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λ′1 = λ1λ2 and λ′2 = λ2. The symmetry action then would look like

(z1, z2, z3, y1) ∼ (
λ′1
λ′2
z1, λ

′
2z2, λ

′
1z3,

1

λ′21
y1)

which results in Q(1) = (1, 0, 1,−2) and Q(2) = (−1, 1, 0, 0).

It is convenient to choose the vectors Q(a) to be the generators of the
Mori-cone Ca. The Mori-cone is the space of all curves C ∈ XΣ that have
positive intersection numbers with all divisors D ∈ XΣ. A useful result is
that the components of the generators of the Mori-cone directly give the
intersection number of the curve Ca with the corresponding divisor. The
whole derivation of the construction of the Mori-cone is given in [15], but
[9] presents a nice and short recipe of how to construct it in this context:

1. In a specific triangulation, consider all top-dimensional cones Sk of the
fan Σ̃. Take all pairs of top-dimensional cones (Sk, Sl) that have two
generators in common.

2. Find the minimal integer relation between the four generators of each
such pair (Sk, Sl). The coefficients of the complementary generators
(Sk ∪ Sl)\(Sk ∩ Sl) have to be positive.

3. Find the minimal integer basis of the equations obtained in 2. The
resulting coefficients are the components of the generators of the Mori-
cone.

This procedure will surely become clear when we do our first example.

Equivalence relations between the divisors can be obtained using the
intersection numbers of the divisors with the Mori-curves Ca. Two divisors
are equivalent if they have the same intersection numbers with all Mori-
curves Ca. The intersection number of three distinct divisors is one if the
three divisors share a cone in Σ̃ and is zero otherwise.

3.3 Examples

Now we have got all tools at hand to locally resolve orbifold singularities
and to compute the intersection numbers of the appearing divisors. We will
now explicitly resolve the singularities of C3/Z3 and C3/Z6−I .

3.3.1 Resolution of C3/Z3

The group action θ of Z3 on C3 reads

θ : (z1, z2, z3)→ (ζz1, ζz2, ζz3), ε = ζ = e2πi/3. (3.10)
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v1  (D1) 

v3  (D3)   

v2  (D2)   

D1

D2

D3

Figure 3.2: Toric diagram of C3/Z3 and the corresponding dual graph

Thus, (3.8) becomes vk1 + vk2 + vk3 = 0 mod 3. In accordance with this
equation, the generators of the unresolved fan Σ can be chosen to be

v1 = (−1,−1, 1), v2 = (1, 0, 1), v3 = (0, 1, 1). (3.11)

The corresponding toric diagram is obtained by simply plotting these
points in the hyperplane (x, y, 1). A connecting line of two such points in
the toric diagram then corresponds to the intersection curve of the associ-
ated divisors and a face bordered by the connecting lines of three divisors
represents the intersection point of these three divisors. The toric diagram
of C3/Z3 and its dual graph are shown in figure 3.2.

In general, the dual toric diagram is more intuitive to read because inter-
section points of three divisors are also points in the dual diagram, whereas
intersection curves of two divisors correspond to curves and divisors cor-
respond to faces. We can get the dual diagram by simply requiring its
properties. This means we just have to change points into faces, lines into
lines and faces into points, preserving the combinatorial data of the original
toric diagram.

To resolve the singularity, we see that there is only one point in between
the points vi that we have to add to the generators of the fan to get a smooth
toric variety. Namely, this point is

w = (0, 0, 1). (3.12)

Obviously, there is only one possible triangulation. The toric diagram
of the resolved singularity and its dual graph are plotted in figure 3.3. We
directly see that there are three top-dimensional cones possible, that is to
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v1 (D1)     

v2  (D2)   

v3  (D3)     

w (E)

D1

D2

D3

E

Figure 3.3: Toric diagram of the resolution of C3/Z3 and the corresponding
dual graph

say the cones generated by

S1 = (v1, v2, w), S2 = (v2, v3, w), S3 = (v3, v1, w). (3.13)

To find the Mori-cone, we proceed as described in the presented recipe given
in the previous section.

1. Take all pairs of top-dimensional cones that have two generators in
common:

All the three cones S1, S2, S3 share two generators with the residual
two cones:

S1 ∪ S2 = {v1, v2, v3, w},
S1 ∪ S3 = {v1, v2, v3, w},
S2 ∪ S3 = {v1, v2, v3, w}.

2. Find the minimal integer relation between the generators of each such
pair. The coefficients of the complementary elements (Sk∪Sl)\(Sk∩Sl)
have to be positive.

Since all pairs of cones in 1. form the same set of generators, they
trivially lead all to the same relation

v1 + v2 + v3 − 3w = 0.

3. Find the minimal integer basis of the equations obtained in 2. The
coefficients of each equation of this basis encode the components of the
corresponding generator of the Mori-cone.
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In this case, there is only one equation in 2. Hence the wanted basis
is the equation itself. This leads to the generator of the Mori-cone

C = (1, 1, 1,−3). (3.14)

Since the components of C directly give the intersection numbers of the
curve defined by C with the corresponding divisors, we can easily read off
the equivalence relations:

Di ∼ Dj , E ∼ −3Di. (3.15)

Therefore, the curve defined by C can be written as

C = D1E = D2E = D3E. (3.16)

With this information at hand it is not hard to determine the possible in-
tersection numbers:

E3 = 9, DiE
2 = −3, DiDjE = 1, DiDjDk = −1

3
. (3.17)

The (P |Q) matrix is in this case

(P |Q) =


−1 −1 1 | 1
1 0 1 | 1
0 1 1 | 1
0 0 1 | −3

 . (3.18)

The generator of the Mori-cone also encodes the C∗ symmetry acting on
the resolved toric variety. It is

(z1, z2, z3, y) ∼ (λz1, λz2, λz3,
y

λ3
) (3.19)

and the new blown up geometry reads

XΣ̃ = (C4\{0})/C∗. (3.20)

3.3.2 Resolution of C3/Z6−I

The Z6−I action θ on C3 is

θ : (z1, z2, z3) ∼ (κz1, κz2, κ
4z3) ε = κ = e2πi/6. (3.21)

This directly leads to vk1 + vk2 + 4vk3 = 0 mod 6. A convenient choice of the
generators of the fan Σ is

v1 = (1,−2, 1), v2 = (−1,−2, 1), v3 = (0, 1, 1). (3.22)
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v1 (D1)    

w1 (E1)    

v3(D3)    

w2 (E2)      

w3 (E3)      
v2(D2)     

E1

E2

E3

D1

D3

D2

Figure 3.4: Toric diagram of C3/Z6−I and its dual graph

In figure 3.4 we see that we have to add the generators

w1 = (0, 0, 1), w2 = (0,−1, 1), w3 = (0,−2, 1). (3.23)

in order to only have volume 1 top-dimensional cones in the resolved fan
Σ̃, which leads to a smooth toric variety XΣ̃. As can be seen in the toric
diagram, the triangulation is unique again.

We see that the generators (v3, w2), (v3, w3), (w1, w3) and (v1, v2) never
share a cone in Σ̃. This means that the exclusion set FΣ̃ is

FΣ̃ = {(z3, y2) = 0, (z3, y3) = 0, (y1, y3) = 0, (z1, z2) = 0}. (3.24)

To determine the Mori-cone, we have to look which 3-dimensional cones
are contained in Σ̃. These are the cones spanned by S1 = (v1, y2, y3), S2 =
(v1, y2, y1), S3 = (v1, y1, z3), S4 = (v2, y2, y3), S5 = (v2, y2, y1) and S6 =
(v2, y1, z3).

The pairs of cones having two generators in common and the minimal
integer relations between the corresponding generators are

S6 ∪ S3 = {v1, v2, v3, w1}, v1 + v2 + 4v3 − 6w1 = 0,

S5 ∪ S2 = {v1, v2, w1, w2}, v1 + v2 + 2w1 − 4w2 = 0,

S4 ∪ S1 = {v1, v2, w2, w3}, v1 + v2 − 3w3 = 0,

S3 ∪ S2 = {v1, v3, w1, w2}, v3 − 2w1 + w2 = 0,

S2 ∪ S1 = {v1, w1, w2, w3}, w1 − 2w2 + w3 = 0,

S6 ∪ S5 = {v2, v3, w1, w2}, v3 − 2w1 + w2 = 0,

S5 ∪ S4 = {v2, w1, w2, w3}, w1 − 2w2 + w3 = 0.
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The minimal integer basis of these 7 equations is

v1 + v2 − 2w3 = 0, v3 − 2w1 + w2 = 0, w1 − 2w2 + w3 = 0.

This directly translates into the Mori-cone which is spanned by

C1 = (1, 1, 0, 0, 0,−2),

C2 = (0, 0, 1,−2, 1, 0), (3.25)

C3 = (0, 0, 0, 1,−2, 1).

To see to which intersection curves these generators belong, we notice
that the generators associated to the divisors D1D2, E1E3, D3E3, and D3E2

never span a cone in Σ̃, hence all triple intersections containing these pairs
vanish. Since the intersection of C1 with D1, D2 and E3 is nonzero, C1

can not be an intersection of one of the divisors of D1, D2, D3, E1 with
any other divisor. Hence, C1 = E2E3. Analogously one can see that C2 =
D1E1 = D2E1 and C3 = E2D1 = E2D2.

Divisors that have the same intersection number with all of these three
curves are equivalent. Thus we can read of the equivalence relations

0 ∼ 6D1 + E1 + 2E2 + 3E3,

0 ∼ 6D2 + E1 + 2E2 + 3E3, (3.26)

0 ∼ 3D3 + 2E1 + E2.

The (C∗)3 symmetry of the resolved orbifold singularity can be read off from
(3.25):

(z1, z2, z3, y1, y2, y3) ∼ (λ1z1, λ1z2, λ2z3,
λ3

λ2
2

y1,
λ2

λ2
3

y2,
λ3

λ2
1

y3). (3.27)

The resolved geometry is

XΣ̃ = (C6\FΣ̃)/(C∗)3. (3.28)

3.4 Global orbifold resolutions

3.4.1 Inherited divisors

In a compact orbifold, there exist further divisors that can have nonvanishing
intersection numbers with the already familiar divisors Diα which fix the
covering space coordinate zi to an orbifold fixed point zi = zfixed,i,α, and
the exceptional divisors E. These divisors are called inherited divisors Ri
and can be defined by fixing the local orbifold coordinate z̃i to a constant
value z̃i = cni 6= z̃fixed,i,α, where ni is the order of the orbifold action in the
i-th T 2-torus. Here we have to be careful not to confuse the local orbifold
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coordinate z̃i with the coordinate zi on the cover. With a convenient choice
of cover coordinates the inherited divisor Ri can be defined as [9]

Ri :=

ni⋃
k=1

{
zi = εkc

}
. (3.29)

Multiplying all these equations together we obtain znii = cni = z̃i. Keeping
in mind that the ordinary divisors Diα are defined by fixing the cover coor-
dinate zi to a constant value whereas the inherited divisors fix z̃i = znii , one
can claim the equivalence relation

Ri ∼ niDi,α, (3.30)

which is valid near the orbifold fixed point.
In the resolved orbifold, the equivalence relation is assumed to take the

form [9]

Ri ∼ niDi,α +
∑
k,β,γ

ak,α,β,γEk,α,β,γ , ∀α, i, (3.31)

where Ek,α,β,γ denotes the exceptional divisors emerging from the resolution
process with some coefficients ak,α,β,γ depending on the singularities we deal
with.

Furthermore, one can define inherited divisors that do not fix the two
degrees of freedom of one complex coordinate zi, but fix one degree of free-
dom of two distinct coordinates zi, zj , i 6= j. This is only possible if the
order of the orbifold action in both coordinates is equal, ni = nj = n. This
divisor is defined as

Rij =

n⋃
k=1

{zijk + z̄ijk = cij} ∪ {zijk − z̄
ij
k = cij} (3.32)

with zijk = zi + εkzj . It is not known how to determine the corresponding
equivalence relations (3.31) explicitly, but they also are claimed to be [9]

Rij ∼ nDij,α +
∑
k,β,γ

ak,α,β,γEk,α,β,γ . (3.33)

3.4.2 Intersection numbers involving inherited divisors

In many cases, there is a very direct way to compute the intersection numbers
between the inherited divisors Ri and the ordinary divisors Dj,α using their
definition polynomials on the cover. For example, consider R1R2R3. These
divisors are defined on the covering space as Ri := {znii = cnii }. So, R1R2R3

is simply the number of solutions of the equation system {zn1
1 = cn1

1 , zn2
2 =

cn2
2 , zn3

3 = cn3
3 }, which clearly is n1n2n3. But, since this is on the covering

space, we have not taken into account that the orbifold action θ identifies
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these solutions in groups of size |G|, by which we still have to divide. This
finally yields

R1R2R3 =
n1n2n3

|G|
. (3.34)

Since the ordinary divisors Di,α are defined linearly on the cover, intersection
numbers involving them are simply obtained setting the corresponding ni
equal to 1. Hence

RiRjDk,α =
ninj
|G|

, RiDj,αDk,β =
ni
|G|

. (3.35)

Note that Ri andDi,α can never intersect as well as Ri does not self-intersect.
Thus, i, j, k have to be pairwise distinct.

Using the definition (3.32), one also can find such equations involving
the divisors Rij . Some of them are for example

RijRjiRk = −n
2
ink
|G|

, RijRjkRki =
n3
i

|G|
, (3.36)

where the negative sign is an effect of taking into account the change of
orientation of complex conjugation. Since Rij can only exist if ni = nj , we
can set nj = ni in the first and nk = nj = ni in the second intersection
number of (3.36).

3.4.3 The resolution process

The global resolution in [9] was done as follows: As in the local resolutions,
a lattice N ∼= Z3 has to be introduced. The basis of this lattice is this time
fi = miei with ei the euclidean basis vectors. The mi are ∈ N+ and must be
chosen such that they satisfy m1m2m3 = n1n2n3/|G|. Then the inherited
divisors correspond to the one-dimensional cones

Ri : vi = −fi, i = 1, 2, 3. (3.37)

The ordinary divisors Di are associated to the vectors

vi+3 = nifi, i = 1, 2, 3 (3.38)

and the exceptional divisors Ei are again the lattice points that lie in be-
tween the triangle spanned by the points {v4, v5, v6}. Roughly speaking, this
procedure continues like in the resolution of local singularities. This means
we look for possible triangulations that fulfill the fan conditions and use the
basic rule that the intersection number is 1 if the relevant divisors share a
3-dim cone in the resolved fan Σ̃ and is 0 else.
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3.4.4 Nonvanishing intersection numbers in T 6/Z3

Fortunately, in this example, we can go the easy way computing the inter-
section numbers using the equations (3.34)-(3.36). Without much effort we
see that

R1R2R3 = R12R23R31 = R13R32R21 = 9,

R1R23R32 = R2R13R31 = R3R12R21 = −9. (3.39)

Using the equivalence relation

Ri ∼ 3Di,α +

3∑
β,γ=1

Eα,β,γ , (3.40)

we get the only nonvanishing intersection number left, namely

E3
α,β,γ = 9. (3.41)





Chapter 4

GLSM resolutions of T 6/Z3
orbifolds

The T 6/Z3 orbifold is one of the easiest and best understood orbifolds,
which is the main reason why we focus on this orbifold here. We review
the maximal fully resolvable model for this orbifold from [7] as well as the
computation of the intersection numbers in this resolution model. After-
wards, we take a look at the minimal fully resolvable model and determine
the intersection numbers based on this resolution model, which has not been
done before in [7]. Moreover, we consider further resolution models which
lead to factorized A3

2 lattices before we examine a resolution model leading
to a non-factorized E6 lattice. To this model, we depict remaining problems
we had in the computation of the intersection numbers.

We use the same notation as in [7], in particular we label the 27 fixed
points of T 6/Z3 by the indices (α, β, γ) each running from 1 to 3, denoting
the the place of the singularity in the first, second and third two-torus,
respectively.

To construct a six-torus with a Z3 orbifold symmetry out of our GLSM,
we introduce the superpotential Wtorus,

Wtorus =
∑
a,i

CaZ3
ai (4.1)

with the chiral superfields Ca and Zai with the charge assignment given in
table 4.1.

The Fca-term constraints then directly give the torus defining equations
(2.17) in Weierstraß-mapped coordinates,

z3
a1 + z3

a2 + z3
a3 = 0.

As we have already seen, the orbifold-action θ is

θ : (z11, z21, z31) ∼ (ζz11, ζz21, ζz31),

37
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Superfield Z1i Z2j Z3k C1 C2 C3

U(1) charges\ scalar component z1i z2j z3k c1 c2 c3

R1 1 0 0 -3 0 0

R2 0 1 0 0 -3 0

R3 0 0 1 0 0 -3

Table 4.1: Charge assignment for the construction of a T 6-torus possessing
a Z3 symmetry

whereas the 3-volutions αa act as

αa : (za1, za2, za3) ∼ (za1, ζ
2za2, ζza3).

An exceptional gauging U(1)Eαβγ spares a Z3-action on the coordinates
that looks like

θαβγ : (z1α, z2β, z3γ) ∼ (ζz1α, ζz2β, ζz3γ). (4.2)

It can be shown that these are not 33 = 27 but only 4 independent Z3 actions
that can be generated by θ, α1, α2 and α3 as

θαβγ = θαα−1
1 αβ−1

2 αγ−1
3 . (4.3)

4.1 The maximal fully resolvable model

In the maximal fully resolvable model, an exceptional gauging U(1)Eαβγ
is introduced for each of the 27 T 6/Z3 orbifold fixed points. Since each
T 6/Z3 fixed point locally looks like a C3/Z3 singularity, we recall the cor-
responding GLSM resolution charge assignment, 2.1. Together with the
torus-constructing fields and charges given in table 4.1, we can claim the
overall charge assignment for T 6/Z3 in the maximal model by table 4.2.
Performing our exceptional gaugings, we have to take care not to modify
the target space dimension. For this reason we again introduce the excep-
tional coordinates xijk, i, j, k = 1, ..., 3, one for each exceptional gauging.
As we have seen in section 2.2.1, if xijk takes on a VEV, this leads to a
Z3 symmetry acting on the coordinates (z1i, z2j , z3k). This is the reason to
claim equation (4.2). We see that in the maximal fully resolvable model, we
have four independent Z3-actions Z3,orbi×Z3

3,3-vol, namely θ, α1, α2 and α3.

The D-term constraints can easily be read off from the charge assign-
ment:

|za1|2 + |za2|2 + |za3|2 − 3|ca|2 = aa, (4.4)

|z1α|2 + |z2β|2 + |z3γ |2 − 3|xαβγ |2 = bαβγ , (4.5)
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Superfield Z1i Z2j Z3k C1 C2 C3 Xijk
U(1) charges\ s. comp. z1i z2j z3k c1 c2 c3 xijk

R1 1 0 0 -3 0 0 0

R2 0 1 0 0 -3 0 0

R3 0 0 1 0 0 -3 0

Eαβγ δiα δjβ δkγ 0 0 0 -3 δiαδjβδkγ

Table 4.2: Charge assignment for T 6/Z3 in the maximal fully resolvable
model

with a, α, β and γ running from 1 to 3.
Since we performed the exceptional gaugings U(1)Eαβγ , we have lost the

gauge invariance of our six-torus producing potential (4.1). This can be
fixed by multiplying the exceptional fields Xijk to the fields Zai in a proper
way. Equation (4.1) then becomes

Wtorus = C1

∑
i

Z3
1i

∏
j,k

Xijk + C2

∑
j

Z3
2j

∏
i,k

Xijk + C3

∑
k

Z3
3k

∏
i,j

Xijk. (4.6)

This gauge invariant superpotential Wtorus now is the source of various
F-term constraints. We denote the F-term constraints following from the
derivative of Wtorus with respect to xijk, zai and ca by Fxijk , Fzai and Fca ,
respectively.

The 27 Fxijk constraints read

c1z
3
1i

∏
(β,γ)6=(j,k)

xiβγ + c2z
3
2j

∏
(α,γ)6=(i,k)

xαjγ + c3z
3
3k

∏
(α,β)6=(i,j)

xαβk = 0 (4.7)

and the 9 Fzai terms are

c1z
2
1i

∏
β,γ

xiβγ = 0, c2z
2
2i

∏
α,γ

xαiγ = 0, c3z
2
3i

∏
α,β

xαβi = 0. (4.8)

From now on, we use the shorthand notation

X1i =
∏
β,γ

xiβγ , X2i =
∏
α,γ

xαiγ , X3i =
∏
α,β

xαβi. (4.9)

We furthermore find the three torus-generating constraints Fca to be

z3
11X11 + z3

12X12 + z3
13X13 = 0,

z3
21X21 + z3

22X22 + z3
23X23 = 0, (4.10)

z3
31X31 + z3

32X32 + z3
33X33 = 0.

As we have seen in the resolution of C3/Z3, the resolution of T 6/Z3

now only depends on the value of the FI-parameters aa and bαβγ in the
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D-term constraints. In general, to resolve the orbifold singularities, we need
aa, bαβγ > 0 ∀a, α, β, γ, which is the blow-up phase condition. We will
analyze the phase structure a bit more thoroughly in the minimal fully
resolvable model, because there we have to deal with less FI-parameters a
and b, which makes the discussion much clearer.

4.1.1 Divisors in the maximal fully resolvable model

In [9], three different types of divisors where imposed, which are called
ordinary (Dai), exceptional (Eαβγ) and inherited divisors (Ra). We now
give a proper definition of these divisors in the maximal fully resolvable
model.

Ordinary divisors

In [9], the ordinary divisors Dai are defined as divisors which fix the coor-
dinate ua of the a-th two-torus to the value of an orbifold fixed point. To
obtain a proper definition in the Weierstraß coordinates zai, we take a look
back on the orbifold action θ in equation (2.18). Obviously, the fixed points
under this action should fulfill the condition (z11, z21, z31) = (0, 0, 0).

One could naively think that the three ordinary divisors in each two-
torus are obtained by the three solutions to za1 = 0 combined with the
corresponding torus defining equation in (4.10), like

z12

z13
= −X13

X12
· ζk (4.11)

for the ordinary divisors in the first two-torus. But this is not the case:
evidently, these 3 solutions for k = 1, 2, 3 are all identified applying the 3-
volution action α1. Hence this can only be one out of three ordinary divisors.
This shows clearly that it is indispensable not just to look for fixed points
under the action of θ, but to search for fixed points under θ, αa and the
C∗-action of the weighted projective space P6

1,1,1 we are in.
This means we can go the other way around of what we did in (2.13)

and write our Z3 actions again as zai → ζ · zai, a, i = 1, 2, 3. We now see
clearly that the 3 · 3 ordinary divisors correspond to

Dai := {zai = 0} , (4.12)

which is what we use to define the ordinary divisors in the maximal fully
resolvable model.

Exceptional divisors

The definition of the exceptional divisors in the GLSM language is easy to
give: we simply set to zero the exceptional coordinates xαβγ which arise in
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the resolution process,

Eαβγ := {xαβγ = 0} . (4.13)

Inherited divisors

In contrast to the work of [9], we only consider the inherited divisors Ra that
fix both the real and imaginary part of the coordinate of only one of the three
two-tori, i.e. we do not consider divisors of the type Rij . On the covering
space (i.e. the space where we have not divided out the orbifold symmetries
yet), we define the inherited divisor Ra by setting the corresponding complex
coordinate ua to a fixed value ũa. Since every divisor has to be invariant
under the orbifold symmetries, we have to add to the definition the image
points of ũa under the 3-volution and orbifold actions. Hence we can write

Ra :=
2⋃

k,l=0

{
ua = ζkũa + l · ζ − 1

3

}
. (4.14)

The most direct way to obtain a hypersurface constraint for Ra in the
Weierstraß coordinates zai we use goes as follows: we map the 9 points in
the a-th two-torus that make up the inherited divisor Ra by mapping the
first point ũa, which we call (z̃a1, z̃a2, z̃a3). The 8 remaining points are the
image points of (z̃a1, z̃a2, z̃a3) under 3-volution and orbifold action, which
are given by equation (2.18) and (2.19). Hence we can write the definition
of Ra in Weierstraß coordinates as

Ra :=

(za1, za2, za3) =

2⋃
k,l=0

(ζkza1, ζ
2lza2, ζ

lza3)

 . (4.15)

To get the hypersurface equation for Ra, we simply have to think about
how it has to look in order to reproduce the 9 points of (4.15) when we
compute the intersection set with the equation that defines the a-th two-
torus in the projective space P2

1,1,1×P2
1,1,1×P2

1,1,1 given in the corresponding
equation of (4.10).

In order to get a more handy form of our equations where we do not
have to care anymore about the C∗ symmetry of P2

1,1,1, we divide (4.10) by

za3 and call
(
za1
za3

)
= pa and

(
za2
za3

)
= qa to get

Xa1p
3
a +Xa2q

3
a = −Xa3. (4.16)

We see that the orbifold action θ and the 3-volution αa act as

θ : pa → ζpa, qa → qa, (4.17)

αa : pa → ζ2pa, qa → ζqa,
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on our new coordinates pa, qa.
Since θ and αa form a basis of Z3 actions on pa and qa, a hypersurface

equation for Ra in

(
pa
qa

)
coordinates has to reproduce all the 9 points

(
pa
qa

)
=

2⋃
k,l=0

{(
ζkp̃a
ζ lq̃a

)}
(4.18)

in the intersection set with equation (4.16), where p̃a = z̃a1
z̃a3

, q̃a = z̃a2
z̃a3

.
The only possible equation for Ra reproducing such a solution set is a

third degree polynomial in pa and qa,

Ra :=
{
p3
a +Aaq

3
a = Ba

}
, (4.19)

with some complex constants Aa and Ba depending on

(
p̃a
q̃a

)
.

Multiplying this equation with z3
a3, we get back our Weierstraß coordi-

nates of the weighted projective space P2
1,1,1, where Ra reads in the maximal

fully resolvable model

aa1(ũa)z
3
a1 + aa2(ũa)z

3
a2 + aa3(ũa)z

3
a3 = 0, (4.20)

with some complex coefficients aai depending on the place ũa of the inherited
divisor on the covering space.

Since we want the inherited divisors Ra to be fully gauge invariant, we
have to multiply the coordinates zai in (4.20) with the exceptional coordi-
nates xαβγ on the right places. The final defining equations for the inherited
divisors in the maximal fully resolvable model then read

Ra :=
{
aa1Xa1z

3
a1 + aa2Xa2z

3
a2 + aa3Xa3z

3
a3 = 0

}
. (4.21)

as it was already found in [7].

Equivalence relations

From (4.21) we can read off an equivalence relation between the inherited,
ordinary and exceptional divisors as it was done in [7]. They read

R1 ∼ 3D11 +
∑
β,γ

E1βγ ∼ 3D12 +
∑
β,γ

E2βγ ∼ 3D13 +
∑
β,γ

E3βγ , (4.22)

and analogously for R2, R3.

4.1.2 Intersection numbers

In this section, we will compute the triple intersection numbers (i.e. the
number of distinct intersection points of three divisors) of the divisors we
just introduced in both the orbifold and the resolved blow-up phase.
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The orbifold phase

The orbifold phase is characterized by bαβγ < 0 < aa. We directly see in the
D-term constraint (4.5) that the exceptional coordinates xαβγ are forced to
have a VEV, hence there are no exceptional Divisors Eαβγ := {xαβγ = 0}
possible. This means we just have to calculate the triple intersection num-
bers involving only ordinary and inherited divisors.

In principle, we can obtain all the intersection numbers of the orbifold
phase without using all the divisor-defining equations we derived previously,
we only have to think about how many points the divisors fix on the cover.
As already stated, the inherited divisors are defined by fixing 9 points on
the cover, one point and its 8 images under 3-volution and orbifold action.
Contrary, since the ordinary divisors fix one coordinate to the value of an
orbifold fixed point, they are only defined by one point (the images under
orbifold action and 3-volution would again be that point). Hence it is easy
to derive the intersection numbers by simply multiplying the numbers of
points the divisors define. After that, we only have to divide out all the
orbifold symmetries by only counting once solutions that can be identified
using combinations of θ and αa. We directly get

D1iD2jD3k = 1, D1iD2jR3 = 1, D1iR2R3 = 3, R1R2R3 = 9, (4.23)

for i, j, k = 1, 2, 3.

We can also determine these intersection numbers in a GLSM way using
the F- and D-term constraints as well as the divisor hypersurface equations
we derived. In the resolved blow-up phase, this will be the only consistent
way to go.

In the orbifold phase, since all xαβγ have a VEV and since at least one zai
for each index a has to be nonzero (see eq. (4.4), aa > 0), the Fzai-constraints
(4.8) force all ca to vanish. The only nontrivial F-term constraints are then
Fca , (4.10).

We can compute D1iD2jD3k plugging in the definition Dal := {zal = 0}
into the Fca constraints (4.10) and counting the number of solutions. Clearly,
we get 3 cubic equations which give 3 solutions differing by a factor of ζn,
n = 0, 1, 2 each. In total, these are 3·3·3 solutions which all can be identified
using the 3-volutions αa and the orbifold symmetry θ. Hence this confirms
that D1iD2jD3k = 1.

Next, D1iD2jR3 can be computed inserting the definitions of D1i and
D2j in the first two equations of (4.10). Furthermore, we have a homoge-
neous third degree polynomial for R3 as the third one in (4.21) and the last
equation of (4.10) left over. Hence we have four homogeneous degree three
polynomials which we can intersect to obtain 34 solutions differing again by
factors of ζn. Once more, these 34 solutions all can be identified using the
θ and αa actions. So as expected, we get D1iD2jR3 = 1.
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For D1iR2R3 we end up with five homogeneous cubic polynomials, giving
35 solutions which differ by factors of powers of ζ again. This time, since we
just have four independent Z3 actions at our disposal, we only can identify
the solutions in groups of 34 each, which means that we obtain D1iR2R3 = 3,
as we should.

Finally, for R1R2R3, we have three cubic equations for all the Ra and
three cubic polynomials out of the Fca-term constraints. So with six homo-
geneous cubic equations we naturally get 36 solutions that we can identify
in groups of 34 using θ and αa to obtain R1R2R3 = 36

34
= 9.

All these triple intersections are consistent with the D-term constraints
and the phase condition bαβγ < 0 < aa, as the reader can easily check
himself.

The blow-up phase

The blow-up phase is defined by 0 < bαβγ << aa. Since bαβγ > 0, the
xαβγ do not necessarily have to have a VEV, so in this phase, exceptional
divisors Eαβγ := {xαβγ = 0} occur. This is the phase where the orbifold
singularities are resolved, thus we should get the same results as in [9],
which are presented in chapter 3.

Clearly, in the orbifold phase, Ra and Dai did not intersect by definition.
With the D- and F-term constraints as well as the hypersurface equations
for the divisors at hand, we can show that this remains the same in the
blow-up phase. We insert the Dai condition zai = 0 in the corresponding F-
term constraint (4.10) and the defining equation for Ra to obtain two linear
independent homogeneous polynomials in z3

aj and z3
ak for j, k 6= i. We can

combine these polynomials to get the conditions

Xaj · z3
aj = Xak · z3

ak = 0, (4.24)

If one of the z-coordinates is zero, then atomatically by (4.10) all the three
coordinates zai, i = 1, 2, 3 are zero, which violates the blow-up phase condi-
tion aa > 0 in (4.4). Hence Ra and Dai do not intersect. There is a complete
analogous way to show that Ra does not intersect with Eijk. This was done
explicitly in [7], so we will not do it again here. This directly means taking
use of (4.22) that Ra does not self-intersect.

Next, let us investigate R1R2R3. Since Ra does not intersect with Eijk
we surely know that on the divisors Ra, all exceptional coordinates xαβγ have
to have a VEV. Thus, with the definitions of the inherited divisors (4.21)
and the Fca-term constraints (4.10), we have six homogeneous polynomials
of degree three of which we want to have the intersection set. As in the
orbifold phase, these six cubic equations give 36 solutions that differ by
factors of potentials of ζ. Hence these solutions can again be identified in
groups of 34 by the orbifold action θ and the three 3-volutions αa we have
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in that model. Thus we get R1R2R3 = 36

34
= 9 as we also had in the orbifold

phase.

As we know that Ra ∩Eijk = { }, we can take the equivalence relations
(4.22) to determine the intersection numbers involving Ra and Da′i, with
a′ 6= a. We compute

R1R2D3i = R1R2
1

3

R3 −
∑
j,k

Ejki

 =
1

3
R1R2R3 = 3. (4.25)

Analogously, we get

R1D2iD3j = R1
1

3

R2 −
∑
k,l

Ekil

 1

3

R3 −
∑
k,l

Eklj

 =
1

9
R1R2R3 = 1.

(4.26)

The only intersection that vanishes in the blow-up but was present in
the orbifold phase is the intersection D1iD2jD3k: We directly see that z1i =
z2j = z3k = 0 would contradict the blow-up phase condition 0 < bαβγ << aa,
because bijk = −3|xαβγ |2 < 0. It is nice to see that the orbifold fixed point
D1iD2jD3k is present in the orbifold phase, but vanishes in the blow-up
phase. This is where the GLSM resolution process delivers a very intuitive
picture of how we get rid of orbifold singularities using these methods.

Next we consider intersections containing at least two different excep-
tional divisors, Eijk and Ei′j′k′ , with (i, j, k) 6= (i′, j′, k′). Looking at (4.10),
we see that an exceptional divisor Eijk sets one term to zero in each of the
three torus defining equations of (4.10). A further exceptional divisor Ei′j′k′

would set to zero at least one other term in the three equations (4.10), so
in at least one of these three equations, we get something like

Xaiz
3
ai = 0. (4.27)

This always indicates a violation of the blow-up phase condition since in this
case we can always construct relations like∑

αβγ

kαβγbαβγ >
∑
a

kaaa, (4.28)

with some coefficients kαβγ , ka which are either 0 or 1. This contradicts the
condition 0 < bαβγ << aa, hence we conclude that there are no intersections
of two or more different exceptional divisors in the blow-up phase.

Since we know that different exceptional divisors do not intersect, we can
use the equivalence relations (4.22) to compute the triple self-intersection
E3
ijk:

E3
ijk = (R1 − 3D1i) (R2 − 3D2j) (R3 − 3D3k) = 9. (4.29)
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Superfield Z1i Z2j Z3k C1 C2 C3 X111

U(1) charges\ s. comp. z1i z2j z3k c1 c2 c3 x111

R1 1 0 0 -3 0 0 0

R2 0 1 0 0 -3 0 0

R3 0 0 1 0 0 -3 0

E111 δi1 δj1 δk1 0 0 0 -3

Table 4.3: Charge assignment for T 6/Z3 in the minimal fully resolvable
model

Furthermore, using (4.22), one gets

D1iD2jEijk =
1

9

∑
i,j

E3
ijk = 1, DaiE

2
ijk = −1

3
E3
ijk = −3. (4.30)

4.2 The minimal fully resolvable model

In the minimal fully resolvable model, which appeared first in [11], only one
exceptional gauging is needed to resolve all the 27 orbifold singularities of
T 6/Z3 at once. The charge assignment is given in table 4.3, where x111 is
the exceptional coordinate corresponding to the U(1)E111 gauging.

This directly leads to the D-term constraints

|za1|2 + |za2|2 + |za3|2 − 3|ca|2 = aa, (4.31)

|z11|2 + |z21|2 + |z31|2 − 3|x111|2 = b111.

The gauge invariant torus producing superpotential Wtorus looks like

Wtorus =
∑
a

Ca
(
z3
a1x111 + z3

a2 + z3
a3

)
, (4.32)

hence we obtain the F-term constraint Fx111

c1z
3
11 + c2z

3
21 + c3z

3
31 = 0, (4.33)

the Fzai terms are

caz
2
a1x111 = 0, caz

2
a2 = 0, caz

2
a3 = 0, (4.34)

and the torus-defining constraints Fca read

x111z
3
a1 + z3

a2 + z3
a3 = 0. (4.35)
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4.2.1 Divisors in the minimal fully resolvable model

According to equation (4.3), the exceptional gauging U(1)E111 spares only
one Z3 action on the Weierstraß coordinates zai, rather than the four ac-
tions Z3,orbi × Z3

3,3-vol we had in the maximal fully resolvable model. This
action is the orbifold action θ in (2.18). Hence all divisors in the minimal
fully resolvable model have to be invariant under the orbifold action θ, but
not anymore under the 3-volutions αa. This leads to some necessairy mod-
ifications in their respective hypersurface equations. We will work out the
proper definitions in the following.

Ordinary divisors

An ordinary divisor fixes two real coordinates of the orbifold to the value of
an orbifold fixed point [9]. Since the only orbifold symmetry in the minimal
fully resolvable model is

θ : (z11, z21, z31)→ (ζz11, ζz21, ζz31),

clearly, an orbifold fixed point must fulfill the condition (z11, z21, z31) =
(0, 0, 0). Hence we obtain the ordinary divisors in the minimal fully resolv-
able model by setting one of the coordinates za1 to zero. Naively, one could
have the impression that there is just one orbifold fixed point and only the
three corresponding ordinary divisors Da1 exist. But this is not quite right:
combining the condition za1 = 0 with the Fca-term constraints (4.35), we
obtain three distinct points for each divisor Da1, namely the three solutions
to (

za2

za3

)3

= −1,
za2

za3
= −ζ ñ, ñ = 0, 1, 2. (4.36)

This means that an ordinary divisor that is equivalent to an ordinary divisor
in the maximal fully resolvable model has to be defined by

Dan :=

{
za1 = 0

∣∣∣∣ za2

za3
= −ζn

}
. (4.37)

In particular, we have to keep in mind that the number of our solutions of
the equation system with the torus defining equations (4.35) and the hyper-
surface constraints za1 = 0 will be raised by a factor of 3 for each ordinary
divisor involved in the triple intersection number we compute. The reason
for this is that by setting za1 = 0, we actually compute the intersection with⋃2
n=0Dan rather than with Dan.

Furthermore, we will see that in the minimal fully resolvable model, the
conditions za2 = 0 and za3 = 0 do not define an ordinary, but an inherited
divisor!
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Exceptional divisors

Since the orbifold symmetries never affect the exceptional coordinates, the
definition of an exceptional divisor is in every model simply given by setting
the associated exceptional coordinate to zero. Hence in the minimal fully
resolvable model, we only have one exceptional divisor,

E111 := {x111 = 0} . (4.38)

Inherited divisors

To find a proper hypersurface equation for the inherited divisors Ra in the
minimal fully resolvable model, we proceed analogously as we did in the
maximal fully resolvable model.

On the covering space, the inherited divisor Ra is again defined by setting
the coordinate ua to some fixed value ua = ũa nonequal to an orbifold fixed
point. Once more, we want our inherited divisor to be invariant under all the
symmetries our resolution model possesses. Since there is just the orbifold
action θ in this model, the inherited divisor is now defined by only three
points on the cover rather than nine as it was in the maximal model. These
three points are the point ua = ũa and its two image points under θ (2.18),
hence Ra is defined by

Ra :=

{
ua =

2⋃
k=0

ζkũa

}
. (4.39)

To transform this definition to the Weierstraß coordinates zai, we simply
call (z̃a1, z̃a2, z̃a3) the mapped point of ũa and add the image points under
the orbifold action θ as it acts in these coordinates. We then obtain

Ra :=

{
(za1, za2, za3) =

2⋃
k=0

(ζkz̃a1, z̃a2, z̃a3)

}
. (4.40)

To get a hypersurface equation for Ra in the projective space of our Weier-
straß coordinates, we simply have to think about how such an equation has
to look in order to reproduce the three points that define Ra in (4.40) when
we intersect it with the corresponding Fca-term constraint in (4.35).

Since (4.35) is cubic in all zai, we necessarily need a linear equation
for Ra in order to get three solution points in the intersection set of both
equations. To see this, we use the coordinates pa = za2

za1
, qa = za3

za1
to get rid

of the C∗-symmetry. Then (4.35) becomes

p3
a + q3

a = −x111. (4.41)

Clearly, the orbifold action θ acts as

θ : pa → ζpa, qa → ζqa (4.42)
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on the coordinates pa, qa. Hence, we need to find an equation that has the
intersection set (

pa
qa

)
=

2⋃
k=0

{
ζk
(
p̃a
q̃a

)}
(4.43)

with equation (4.41), where p̃a = z̃a2
z̃a1

, q̃a = z̃a3
z̃a1

. Such an equation necessarily
has the form

aa2pa + aa3qa = 0, (4.44)

with some complex constants aa2, aa3 depending on

(
p̃a(ũa)
q̃a(ũa)

)
. We multiply

this equation by za1 to get the hypersurface constraint for Ra in Weierstraß
coordinates,

Ra := {aa2(ũa)za2 + aa3(ũa)za3 = 0} . (4.45)

We see that, as already mentioned, the constraints za2 = 0 and za3 = 0
indeed correspond to an inherited divisor Ra, namely the one where either
aa3(ũa) = 0 or aa2(ũa) = 0, respectively. An inherited divisor with aa2 = aa3

forces za1 = 0 in the orbifold phase and hence corresponds to
⋃2
n=0Dan.

There is another way to see that the inherited divisors in the minimal
fully resolvable model have to be homogeneous linear polynomials. It is
analogous to the way used in [7] to show that the inherited divisors in the
maximal fully resolvable model are given by cubic polynomials.

It goes as follows: from the Weierstraß mapping (2.9) we see that

ya = pava (4.46)

with pa = ε
−3/2
1

℘′(ũa)
2 for some point ũa. Since this equation is invariant

under Z3,orbi, it is valid for all the three points within the union of (4.39), so
it can be seen as the hypersurface constraint for Ra. We take the relations

ya =

√
3

22/3
(za2 − za3), va = 2−2/3(za2 + za3) (4.47)

to write (4.46) in the form

(pa(ũa)− 1)za2 + (pa(ũa) + 1)z3 = aa2(ũa)za2 + aa3(ũa)za3 = 0, (4.48)

which exactly reproduces the equation found in (4.45).

Equivalence relations

In order to get an equivalence relation between Dai, Ra and E, we combine
the definition (4.45) of Ra with the always valid torus-equation (4.35) to get

x111z
3
a1 +

(
1−

(
aa2

aa3

)3
)
z3
a2 = 0. (4.49)
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From the first term we read off the equivalence relation

Ra ∼ 3Dai + E111. (4.50)

The root of the second term would set za2 = za3 = 0 and thus would lead
to the same equivalence relations after a short calculation.

4.2.2 Intersection numbers in various phases of the minimal
fully resolvable model

In [7], a thorough analysis of the various phases of the minimal fully resolv-
able model was given, so we will not redo that here. What was not done
before is the computation of the intersection numbers in any of these phases
of the minimal fully resolvable model, so we will focus on that in this section.

To simplify our life in the following, we set the FI-parameters aa all to
the same value, aa = a. Furthermore, we use a more compact notation and
call b111 = b and x111 = x. The whole set of D- and F-term constraints then
reads

|za1|2 + |za2|2 + |za3|2 − 3|ca|2 = a, (4.51)

|z11|2 + |z21|2 + |z31|2 − 3|x|2 = b, (4.52)

c1z
3
11 + c2z

3
21 + c3z

3
31 = 0, (4.53)

caz
2
a1x = caz

2
a2 = caz

2
a3 = 0, (4.54)

xz3
a1 + z3

a2 + z3
a3 = 0. (4.55)

So effectively, we only have the two parameters a, b that determine the
whole phase structure of our resolution model.

A preliminary remark on the inherited divisors Ra

With (4.45) and (4.55), we can replace the modulus of the coordinate |za1|
by

|za1| =

∣∣∣∣∣∣ 3

√
(aa2/aa3)3 − 1

x

∣∣∣∣∣∣ · |za2| =

∣∣∣∣∣∣ 3

√
(aa3/aa2)3 − 1

x

∣∣∣∣∣∣ · |za3|. (4.56)

Hence we can write equation (4.51) as(
1 +

∣∣∣∣ x

(aa2/aa3)3 − 1

∣∣∣∣2/3 +

∣∣∣∣ x

(aa3/aa2)3 − 1

∣∣∣∣2/3
)
|za1|2 − 3|ca|2 = (4.57)

= F (aa2, aa3, x)|za1|2 − 3|ca|2 = a.

So, for the intersection of R1R2R3 we get a constraint like∑
a

a+ 3|ca|2

F (aa2, aa3, x)
− 3|x|2 = b. (4.58)
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Phase Dimension Dai Ra E

a, b < 0 0 triv. nonex. nonex.

b < 0 < a 3 ex. ex. nonex.

0 < b < a 3 ex. ex. ex.

0 < a < b < 2a 3 ex. ex. ex.

0 < 2a < b < 3a, c1, c2 6= 0, c3 = 0 1 D3n3 R3 triv.

0 < 2a < b < 3a, ca = 0 ∀a 3 ex. ex. ex.

0 < 3a < b, ca 6= 0 ∀a 1 nonex. triv. triv.

0 < 3a < b, c1, c2 6= 0, c3 = 0 1 D3n3 R3 triv.

Table 4.4: Resolution phases in the minimal fully resolvable model and
their target space dimension. The existence of the divisors Dai, Ra and
E is specified, whereas triv. means that the corresponding hypersurface
constraint is fulfilled trivially. In two phases, only the divisors D3n3 and R3

are nontrivial.

Hence, for given ranges of a and b in a specific phase, it depends on the
value of the exceptional coordinate x and on the location of the inherited
divisors Ra encoded in aa2 and aa3 if there is an intersection or a violation of
the phase condition. The latter would mean that no intersection is possible,
which is a rather surprising fact. One can easily generalize the constraint
(4.58) to intersections involving both inherited and ordinary divisors: for an
ordinary divisor Da′ni , one just has to leave out the a′-term in the sum over
a.

In our computation of intersection numbers in the following, we will only
consider divisors that fulfill this condition, so we do not have to care about
it anymore.

a, b < 0: The non-geometric regime

In this phase, all the ca and x have to be nonzero. Hence all zai are forced to
be zero, zai = 0 ∀a, i = 1, 2, 3. So the target space collapses to a single point.
Exceptional and inherited divisors are obviously nonexistent in this phase,
whereas the ordinary divisors Dan are part of the target space geometry.

b < 0 < a: The orbifold phase

Since b has to be negative, we see on the D-term constraint (4.52) that x
has to have a VEV, hence no exceptional divisors are possible.

For R1R2R3, we combine the Ra hypersurface equations (4.45) with the
Fca-term constraints (4.55) to obtain 3 · 3 · 3 solution points that differ by
factors of potentials of ζ on the za1 coordinates. Hence we can identify these
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solutions in groups of three using the orbifold action θ. The intersection
number R1R2R3 then reduces to R1R2R3 = 3·3·3

3 = 9, as we have already
found in the orbifold phase of the maximal fully resolvable model.

Computing R1R2D3n, we use the hypersurface constraint z31 = 0 for

D3n, keeping in mind that we thereby actually compute R1R2

(⋃2
n=0D3n

)
.

Thus, we have to divide our solution by a factor of 3 afterwards. Intersecting
the hypersurface equations of the divisors with the torus defining constraints
(4.55), we get 3·3·3 = 27 solutions. Again, we can identify these solutions in
sets of 3 taking use of the orbifold action θ. Hence, R1R2D3n = 1

3 ·
3·3·3

3 = 3,
as we have expected from the maximal fully resolvable model. Analogously,
we get R1D2n2D3n3 = 1 and D1n1D2n2D3n3 = 1 as we should.

0 < b < a: Blow-up phase I

Here, the D-term constraints forbid the sets of coordinates {za1, za2, za3},
{z11, z21, z31} and {x, za2, za3} to vanish. This directly implies that ca = 0
∀a.

Since (z11, z21, z31) 6= (0, 0, 0), all the orbifold fixed points have disap-
peared, hence this phase is fully resolved. This includes thatD1n1D2n2D3n3 =
0.

Again we see that Ra does never intersect with Dan, because this would
set {za1, za2, za3} to zero, which is not allowed in this phase. Furthermore,
an intersection of E with Ra would lead to b > a, hence they do not intersect
either.

Assuming that the following inherited divisors are chosen such that they
fulfill (4.58), we again get

R1R2R3 = 9, R1R2D3n3 = 3, R1D2n2D3n3 = 1. (4.59)

We can make use of the equivalence relation (4.50) to determine the
intersection numbers involving E,

D1iD2jE = 1, DaiE
2 = −3, E3 = 9. (4.60)

As already shown in [7], the blow-up phase I has a sharp upper bound on
the value of b. Considering the intersection curve of two ordinary divisors,
let us take D1n1 and D2n2 , we get

a− b = |z32|2 + |z33|2 + 3|x|2. (4.61)

We see that this is impossible for b > a. Hence b = a marks the limit
where on the one side (b < a) the curve DaniDa′n′i

, a 6= a′ exists whereas it
vanishes on the other side (b > a). This leads us to the next phase.
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0 < a < b < 2a: Blow-up phase II

The first thing we check is if the coordinates ca vanish again. If we consider
that only one ca, for example c1, is nonzero, we immediately see that (4.53)
forces z11 and (4.54) forces z12 and z13 to be zero. Hence a would be negative,
which is not allowed. Also, it is impossible that all the three ca are nonzero
for b < 2a: if they would, we could write b = 3a +

∑
a |ca|2 which would

mean that b > 3a. Furthermore, for only two of the three ca being nonzero
(e.g. c1 and c2), we would get b = 2a + 3|c1|2 + 3|c2|2 + |z31|2 > 2a, which
is the reason why we set the upper bound of the present phase to b↗ 2a.

As we have found out a few lines above, intersection numbers with more
than one ordinary divisor are forced to vanish in this phase.

For inherited divisors satisfying (4.58), we find the nonvanishing inter-
section numbers

R1R2R3 = 9, R1R2D3n = 3. (4.62)

To obtain the intersection numbers involving the exceptional divisor E, we
use the equivalence relation (4.50) to see that

R1R2E = 0, R1D2iE = 3, DaiE
2 = −3, R1E

2 = 0, E3 = 9.
(4.63)

0 < 2a < b < 3a: The critical blow-up phase

This phase branches in two components that differ by their dimensionality.
As we have seen in the discussion of the last phase, either all the ca are zero,
or two of them are nonzero. We start with the latter case.

The case c1 and c2 6= 0, c3 = 0:

In this case, z12 = z13 = z22 = z23 = 0. The remaining F-term constraints
are

z3
32 + z3

33 = 0, c1z
3
11 + c2z

3
21 = 0. (4.64)

Hence, the target space dimension becomes d = 9−4−2−1−1 = 1, so triple
intersection numbers do not make any sense anymore here. Already a single
divisor intersects with the target space to give distinct solution points.

Because of z12 = z13 = z22 = z23 = 0, a = |z11|2−3|c1|2 = |z21|2−3|c2|2.
Thus, the ordinary divisors D1n1 and D2n2 do not exist here. Besides, x = 0
has to be always fulfilled so E does not give any further constraint.

Furthermore, the hypersurface equations for R1 and R2 (4.45) are triv-
ially fulfilled since za2 = za3 = 0. So the only existing divisors in this phase
are D3n3 and R3.

The R3-defining equation a32z32 + a33z33 = 0 intersected with the first
equation in (4.64) leads to z32 = z33 = 0. Hence the only nonvanishing
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coordinates are z11, z21, z31. Since we just have one single nonvanishing co-
ordinate in each two-torus, their moduli are fixed by the D-term constraints
to a nonzero value. Their U(1) phases are physically identified, so we con-
clude that there is only one intersection point of R3 with the target space.

For D3n3 we set z31 = 0 so that z11, z21, z32, z33 are the only nonzero
coordinates. As argued above, the values of z11 and z21 are fixed by the
D-term constraints, so we only have z32, z33 and the first equation in (4.64)
left over. The intersection number of

⋃3
k=1D3k is then given by the number

of solutions to
z332
z333

= −1, which is 3. So the intersection number of one

specific D3n3 with the target space is also 1.

The case ca = 0 ∀a = 1, 2, 3 :

In this component, we get back the D- and F-term constraints we already
know from the orbifold- and the blow-up phases I+II,

|za1|2 + |za2|2 + |za3|2 = a, |z11|2 + |z21|2 + |z31|2 − 3|x|2 = b,

xz3
a1 + z3

a2 + z3
a3 = 0,

hence we also have the same target space dimension, d = 3. Since b > a, it
is impossible to have intersections with two ordinary divisors, as we already
argued in blow-up I+II. Thus, we get all the same intersection numbers as
in blow-up phase II.

If we sum up the three D-term equations for a and substract the one for
b, we get

3a− b =
∑
a

(
|za2|2 + |za3|2

)
+ 3|x|2. (4.65)

This means that b can not grow bigger than 3a, so b = 3a marks the upper
bound of this phase.

0 < 3a < b: The over-blow-up phase

In the over-blow-up regime, at least two ca are forced to be nonzero to avoid
phase contradictions. This directly entails that since a > 0, the exceptional
coordinate x has to vanish. Hence the exceptional divisor E does not estab-
lish a further constraint.

The F- and D-term constraints are truncated to

c1z
3
11 + c2z

3
21 + c3z

3
31 = 0, caz

2
a2 = caz

2
a3 = 0, z3

a2 + z3
a3 = 0,

(4.66)

|za1|2 + |za2|2 + |za3|2 − 3|ca|2 = a, |z11|2 + |z21|2 + |z31|2 = b.

This phase also splits in two branches:
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The case where all ca 6= 0:

In the second equation in (4.66), it is easy to see that in this component,
za2 = za3 = 0, a = 1, 2, 3. Thus,

|za1|2 − 3|ca|2 = a. (4.67)

Since a > 0, za1 is not allowed to be zero, which means that there are no
ordinary divisors present. Furthermore, the hypersurface constraint for the
inherited divisors Ra := {aa2za2 + aa3za3 = 0} is trivially fulfilled. Hence
we can not give any intersection number here.

The case where cb = 0, ca6=b 6= 0:

Assuming that c1, c2 6= 0, c3 = 0, this phase leads to exact the same con-
straints as in the c1, c2 6= 0, c3 = 0 case of the critical blow-up regime,
equation (4.64). Again, the only existing divisors in the one-dimensional
target space are R3 and D3n3 . For values of zai that are in accord with the
D-term constraints, we infer the same intersection numbers as in the corre-
sponding component of the critical blow up phase, R3 = 1 and D3n3 = 1.

One could say that the phase transition between critical blow-up and
over-blow-up does not happen in the cb = 0, ca6=b 6= 0 component, but
occurs between the two other components.

4.3 A fully resolvable model with the exceptional
coordinates x111, x211 and x311

In this section, we discuss a further fully resolvable model with three excep-
tional gaugings U(1)E111 , U(1)E211 , U(1)E311 . We take an analogous charge
assignment as in the last two sections which can be read off from table 4.2
for the fields we introduce in this model. The gauge invariant superpotential
Wtorus that reproduces the torus constraints has the form

Wtorus =C1

∑
i

Z3
1iXi11 + C2

 3∏
i=1

Xi11Z3
21 +

3∑
j=2

Z3
2j

+ (4.68)

+C3

 3∏
i=1

Xi11Z3
31 +

3∑
j=2

Z3
3j

 .

We get the D-term constraints

|za1|2 + |za2|2 + |za3|2 − 3|ca|2 = aa, (4.69)

|z1i|2 + |z21|2 + |z31|2 − 3|xi11|2 = bi11, (4.70)
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with a, i = 1, 2, 3.
As before, the F-term constraints are obtained by taking to zero the

derivatives of Wtorus with respect to the scalar components of the chiral
superfields involved. We get the three constraints Fxi11

c1z
3
1i + c2z

3
21

∏
j 6=i

xj11 + c3z
3
31

∏
j 6=i

xj11 = 0, i = 1, 2, 3. (4.71)

Taking the derivative ∂
∂zai

Wtorus, we get the nine Fzai-constraints

c1z
2
1ixi11 = 0, c2z

2
2j = 0, c3z

2
3k = 0, (4.72)

c2z
2
21

3∏
i=1

xi11 = 0, c3z
2
31

3∏
i=1

xi11 = 0.

for i = 1, 2, 3 and j, k = 2, 3.
The Fca-terms read

x111z
3
11 + x211z

3
12 + x311z

3
13 = 0, (4.73)∏

i

xi11z
3
a1 + z3

a2 + z3
a3 = 0, a = 2, 3. (4.74)

4.3.1 Divisors in the x111, x211, x311 model

In accordance with equation (4.3), we get the symmetry actions for this
model,

θ111 = θ, θ211 = θα1, θ311 = θα2
1. (4.75)

We see that the actions θ and α1 form a basis of all the Z3 actions we
have around. Since the free action α1 acts in only the first of the three
two-tori, we obtain a factorized A2 × A2 × A2 lattice. Once more, these
symmetry actions have consequences on the definition of the divisors we
consider: they all have to be invariant under θ and α1. In general, the
hypersurface constraints are the ones of the maximal fully resolvable model
for divisors of the first two-torus and those of the minimal fully resolvable
model for divisors that constrain coordinates of either one of the second two
two-tori.

Ordinary divisors

In the first two-torus, the orbifold action θ is present as well as the 3-volution
α1. Furthermore, we can use the C∗ symmetry of the weighted projective
space we are in to form a complete basis of Z3-symmetries acting on the
coordinates z1i, i = 1, 2, 3. As in the maximal fully resolvable model, we are
free to change our basis of Z3-actions such that they act on the coordinates
as

(z11, z12, z13)→ (ζiz11, ζ
jz12, ζ

kz13), (4.76)
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where there is no further dependency between i, j, k ∈ {1, 2, 3}. In this
form, it is obvious to see that the orbifold fixed points in the first two-torus
correspond to z1i = 0, which is what we use to define the three ordinary
divisors of the first two-torus:

D1i := {z1i = 0} . (4.77)

However, in the second two two-tori, the situation is different. We have no
3-volutions acting there, so for an orbifold fixed point it is indispensable that
z21 = z31 = 0. Hence it is necessary for each of the three ordinary divisors
of each of the last two two-tori to fulfill the condition Dana := {za1 = 0},
a = 2, 3. As in the minimal fully resolvable model, this directly means that
the condition za1 = 0, a = 2, 3 does describe

⋃3
n=1Dan rather than Da1 as

it was in the maximal fully resolvable model. To pick one ordinary divisor
out of the union of these three, we have to combine the condition za1, a = 2
or 3, with the Fca-term constraint (4.73) to get

za2

za3
= −ζ ñ, ñ = 0, 1, 2. (4.78)

The ordinary divisor Dan a = 2, 3 now is defined by

Dan := {za1 = 0 | ñ = n− 1} . (4.79)

Thus, in this model, it is important for the definition of divisors to keep in
mind in which of the three two-tori we are.

Exceptional divisors

As already mentioned, the exceptional coordinates are never affected by
the symmetries that act in the orbifold. Hence in the present model, the
exceptional divisors Ei11 are simply defined by

Ei11 := {xi11 = 0} . (4.80)

Inherited divisors

Because of the 3-volution α1, the inherited divisor R1 that fixes the coordi-
nates in the first two-torus is defined by

R1 :=
2⋃

k,l=0

{
u1 = ζkũ1 + l · ζ − 1

3

}
. (4.81)

Hence it can be shown in a complete analogous way as in equations (4.14)
- (4.20) that R1 is a homogeneous cubic polynomial in the coordiantes z1i,
i = 1, 2, 3. The gauge invariant form is given by

a11(ũ1)x111z
3
11 + a12(ũ1)x211z

3
12 + a12(ũ1)x311z

3
13 = 0, (4.82)
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with some coefficient functions a1i depending on ũ1.
On the other hand, since the divisors R2 and R3 need not to be 3-volution

invariant, they are defined on the covering space as

Ra :=
2⋃

k=0

{
ua = ζkũa

}
, a = 2, 3, (4.83)

which, according to equations (4.39) - (4.45), translates in Weierstraß coor-
dinates to

Ra := {aa2(ũa)za2 + aa3(ũa)za3 = 0} , a = 2, 3. (4.84)

So, as for the ordinary divisors, in the first two-torus the inherited divisors
are defined as in the maximal fully resolvable model, whereas in the other
two two-tori they are defined as in the minimal fully resolvable model.

Equivalence relations

From equation (4.82) we can directly read off the equivalence relations

R1 ∼ 3D11 + E111 ∼ 3D12 + E211 ∼ 3D13E311. (4.85)

For equivalence relations involving R2 and R3, we again have to combine
their hypersurface constraints (4.84) with the torus defining equations (4.74)
to get ∏

i

xi11z
3
a1 +

(
1− aa2

aa3

)
z3
a2 = 0, a = 2, 3. (4.86)

From this we get the equivalence relations

Ra ∼ 3Dai +
∑
i

Ei11, a = 2, 3. (4.87)

4.3.2 Intersection numbers

As in the maximal fully resolvable model, we confine ourselves to intersection
numbers of the orbifold- and blow-up phase 0 < b << a, where the orbifold
singularities are resolved.

4.3.3 The orbifold phase

The orbifold phase is characterized by bi11 < 0 < aa. As we have already
seen, this forces the exceptional coordinates xi11 to be nonzero, hence there
are no exceptional divisors Ei11 := {xi11 = 0} present in this phase. Thus,
we can only compute intersection numbers involving ordinary and inherited
divisors. Once more, the D- and F-term constraints force all ca to vanish
in the orbifold phase, so the only nontrivial F-term constraints are (4.73),
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(4.74). These are the constraints that we have to intersect with our divisor
hypersurface equations. The number of distinct solutions to the emerging
equation system is the intersection number of the corresponding divisors.

The torus-defining equation (4.73) of the first two-torus has an inter-
section set of 9 and 3 points with R1 (4.82) and D1i (4.77), respectively.
Using the 3-volution α1, these points are identified in groups of 3, so that
the intersection number of R1 with the first two-torus equation reduces to
3 and to 1 for the ordinary divisor D1i.

In the other two two-tori, the intersection numbers of the divisors with
the torus constraints (4.74) are also 3 and 1 for the inherited and ordinary
divisors, respectively. However, the reason for that is another: since there
is no 3-volution around, the inherited divisors are linear polynomials in za2

and za3, as in (4.84). Hence the intersection set of this linear polynomial
with the cubic polynomial of (4.74) directly leads to 3 solutions. Intersecting
(4.74) with the necessary condition za1 = 0 of the ordinary divisor Dan, we
firstly get 3 solutions. But, as already mentioned, this corresponds to the
intersection of the two-torus with

⋃2
na=0Dana , hence we have to divide by

3 and obtain 1 again.
To get the triple intersection numbers, we simply have to multiply these

numbers of solutions and divide by 3 afterwards to consider the Z3-orbifold
action. Hence we get again

R1R2R3 =
3 · 3 · 3

3
= 9, R1R2D3n3 =

3 · 3 · 1
3

= 3, (4.88)

R1D2n2D3n3 =
3 · 1 · 1

3
= 1, D1n1D2n2D3n3 = 1 · 1 · 1 = 1.

The last intersection number, D1n1D2n2D3n3 , has not to be divided by 3 for
the orbifold action, since this intersection corresponds to an orbifold fixed
point.

4.3.4 The blow-up phase

The blow-up phase is determined by 0 < bi11 << aa. The D- and F-term
constraints (4.69) - (4.74) again force all ca to be zero. Since bi11 > 0,
exceptional divisors Ei11 := {xi11 = 0} are allowed. It is easy to show that
an intersection of an inherited divisor Ra, a = 1, 2, 3 with an exceptional
divisor Ei11 is impossible because this would lead to a phase contradiction
of the form bi11 > aa.

We can compute the intersection numbers involving Ra, a = 1, 2, 3 and
Da′i in exact the same way as we did in the orbifold phase and obtain
the same results as in (4.88), with only one exception: the intersection
D1iD2n2D3n3 vanishes in the blow-up phase since this would contradict the
phase condition bi11 > 0. Here we see again that the orbifold has been
resolved, because D1iD2n2D3n3 corresponds to an orbifold fixed point which
is present in the orbifold phase, but vanishes in the blow-up phase.
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By use of the linear equivalences (4.85) and (4.87), we get the intersection
numbers of the exceptional divisors,

E3
i11 = 9, D1i

∑
j

E2
j11 = DanaE

2
i11 = −3, (4.89)

D1iDana

∑
j

Ej11 = D2n2D3n3Ei11 = 1, a = 2, 3.

4.4 A non-factorized orbifold resolution model

The last model we discuss is the most subtle one: We consider a fully resolv-
able model with the exceptional gaugings U(1)E111 , U(1)E222 and U(1)E333

and the corresponding exceptional coordinates x111, x222, x333. According to
(4.3), this model possesses the symmetry actions

θ111 = θ, θ222 = θα1α2α3, θ333 = θα2
1α

2
2α

2
3. (4.90)

It is easy to see that the two independent actions θ and α1α2α3 form a
basis of these symmetries. Since the 3-volution action α1α2α3 operates in
all three two-tori simultaneously, we clearly do not have a factorized A3

2

lattice anymore.

We try to go the naive way here, which means we define all our divisors
such that they are invariant under the actions of (4.90). On the covering
space, this means that the inherited divisors Ra are defined by union over
the nine points

Ra :=
3⋃

k,l=0

{
ua = ζkũa + l

ζ − 1

3

}
. (4.91)

Hence on the cover, the intersection R1R2R3 has 9 ·9 ·9 = 36 distinct points.
Using the orbifold- and 3-volution action of (4.90), we can identify these

points in groups of 9, so we get the intersection number R1R2R3 = 36

32
= 81.

This is completely in contrast to all the other models we considered so far,
where we always had R1R2R3 = 9.

This conflict can be solved as follows [13]: first, we have to determine a
refined torus lattice that contains the shift α1α2α3 as a lattice vector. Then
we redefine the fundamental domain of our orbifold to be the parallelepiped
spanned by the lattice vectors of the refined lattice. Finally, we count how
many branches each of our divisors has under the actions (4.90) within this
new fundamental domain. We multiply them and divide out the size of
the symmetry group defined by (4.90) as we identify points that differ by
combinations of θ and α1α2α3.
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4.4.1 The torus lattice of the x111, x222, x333 model

The A3
2 lattice of the resolution models of T 6/Z3 we treated so far is given

by [7]

e1 =



1
0
0
0
0
0

 , e2 =



−1
2√
3

2
0
0
0
0

 , e3 =



0
0
1
0
0
0

 , e4 =



0
0
−1

2√
3

2
0
0

 , e5 =



0
0
0
0
1
0

 , e6 =



0
0
0
0
−1

2√
3

2

 ,

since we have chosen our two-tori to be spanned by 1 and the fixed complex

structure ζ = −1
2 +

√
3

2 i. To get the refined lattice that fits to our model,
the vector of the 3-volution action α1α2α3 has to be included to the torus
lattice. Since α1α2α3 acts as

ua ∼ ua −
1

2
+

√
3

6
i, a = 1, 2, 3, (4.92)

the new lattice vector is

eα1α2α3 =
1

3
(e2 − e1 + e4 − e3 + e6 − e5) . (4.93)

So we get the new lattice êi [7]

ê1 = e3 + e4, ê2 = −e4, ê3 =
1

3
(e2 − e1 + e4 − e3 + e6 − e5)

(4.94)

ê4 = −e6, ê5 = e5 + e6, ê6 = −e2.

Note that each of the old lattice vectors ei can be written as an integer
relation of the new lattice vectors êi.

A well-defined orbifold lattice has to be invariant under the orbifold
action. This means that the lattice vectors of the refined lattice have to
satisfy the relations [7]

e2a−1
θ−−−→ e2a, (4.95)

e2a
θ−−−→ −e2a − e2a−1, a = 1, 2, 3.

Demanding this to our lattice basis êi, we end up with the final refined
lattice vectors ẽi for this model [7]:

ẽ1 = e3, ẽ2 = e4, ẽ3 =
1

3
(−e1 + e2 − e3 + e4 − e5 + e6) , (4.96)

ẽ4 = −1

3
(e1 + 2e2 + e3 + 2e4 + e5 + 2e6) , ẽ5 = e5, ẽ6 = e6.

By computation of the Cartan matrix Amn = 2 ẽm·ẽnẽm·ẽm , we can classify
this lattice to be an E6 Lie-lattice.
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4.4.2 The new fundamental domain

We choose the parallelepiped spanned by the vectors ẽi, i = 1, ..., 6 to be the
fundamental domain of the orbifold we are investigating. This fundamental
domain can be parametrized by

T 6
E6

:= {
6∑
i=3

xiei +
1

3
y1(−e1 + e2 − e3 + e4 − e5 + e6) (4.97)

− 1

3
y2(e1 + 2e2 + e3 + 2e4 + e5 + 2e6) | 0 ≤ xi, y1, y2 < 1}.

An inherited divisor Ra fixes the cover coordinate ua to some value ũa, hence
we have to give a mapping from the coordinates xi, y1, y2, i = 3, ..., 6 back
to the cover coordinates ua in order to parametrize the fundamental domain
T 6
E6

in the coordinates ua. This mapping is given by

u1 = −1

2
y1 +

√
3

6
i(y1 − 2y2),

u2 = x3 −
1

2
x4 −

1

2
y1 +

√
3

2
i(x4 +

1

3
y1 −

2

3
y2), (4.98)

u3 = x5 −
1

2
x6 −

1

2
y1 +

√
3

2
i(x6 +

1

3
y1 −

2

3
y2).

Plugging in the extremal values for xi and y1, y2, we can read off the ranges
of the coordinates ua:

−1

2
< Re(u1) ≤ 0, −

√
3

3
< Im(u1) <

√
3

6
,

−1 < Re(u2) < 1, −
√

3

3
< Im(u2) <

2
√

3

3
, (4.99)

−1 < Re(u3) < 1, −
√

3

3
< Im(u3) <

2
√

3

3
.

It is important to note that the fundamental domain T 6
E6

is not given by
the cuboid spanned by the ranges of the complex coordinates ua, because
the coordinates y1, y2 appear in each coordinate ua. Nevertheless, an in-
herited divisor Ra can fix the coordinate ua to any value in between its
coordinate range (the orbifold fixed points excluded). However, it might
happen that the intersection of the inherited divisors does not lie in the fun-
damental domain T 6

E6
anymore. These intersections can be mapped back to

the fundamental domain using the torus vectors. As we see in figure 4.1,
such intersection points become identified with already existing intersection
points within the fundamental domain.
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A A' ~ A

ua

ub

range ua

ra
ng

e 
u b

Ra Ra'

Rbub 
~

ua 
~ ua' 

~

e1

e2

Figure 4.1: Two (real) inherited divisors Ra, Rb in a (real) two-dimensional
torus T 2. We see that the divisor Ra splits in two parts, which is why we
get two intersection points A,A′ that differ by the torus lattice vector e1.
Hence these two intersection points A,A′ are identified, A ∼ A′.

4.4.3 The branch counting

First, we look how many 3-volution branches each inherited divisor Ra has
within its coordinate range given in (4.99). Afterwards, we see which of
these branches can be identified using the torus lattice vectors.

The 3-volution acts as

α1α2α3 : ua → ua −
1

2
+

√
3

6
i, a = 1, 2, 3, (4.100)

so we directly see that R1 can only have one single 3-volution branch: the
range of the real part of u1 only has the length 1

2 , so there can not be
any further 3-volution image of R1 within the fundamental domain we have
chosen, because the action α1α2α3 already shifts the real part by −1

2 . To
count the 3-volution branches in the second and third two-tors, we look at
figure 4.2. We see that in these two-tori, each inherited divisor has three 3-
volution branches. This has its reason in the fact that the action of α1α2α3

in the 2. (3.) two-torus satisfies the equation

3(α1α2α3)a =

(
−3

2√
3

2

)
=

(
−1

2√
3

2

)
−
(

1
0

)
= e2a − e2a−1, a = 2, 3. (4.101)
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Re(u2,3)

Im(u2,3)

-1 1

-(31/2/3)i

(2/3)31/2i

e2a

e2a-1

Figure 4.2: One inherited divisor R2,3 in the coordinate range of the sec-
ond/third two-torus and all its 3-volution branches. Points that are coloured
the same can be identified using the torus lattice vectors. As we see, we have
3 distinct 3-volution branches (one for each colour).

Hence every third 3-volution can be expressed by an integer relation of the
lattice vectors e2a, e2a−1, so there are three independent 3-volution branches.

Next we investigate how many orbifold action θ branches there are of an
inherited divisor within the fundamental domain (4.97) we have chosen. We
see in (4.95) that the orbifold action θ always maps points from the inside
to the outside of the fundamental domain. But, we can use the lattice
vectors ẽ1, ẽ2, ẽ5 and ẽ6 to shift them back to the fundamental domain we
defined. The lattice vectors ẽ3, ẽ4 can not be used to shift points back to
the fundamental domain since they would induce a coordinate shift in the
other two two-tori, which is not allowed. Hence, we get a single orbifold
branch in the first two-torus, whereas we have three of them in the second
two two-tori.

We can multiply the number of branches to get the intersection number
1 · 3 · 3 · 1 · 3 · 3 = 34 on the cover. Dividing out the orbifold- and 3-volution
action θ and α1α2α3, we get

R1R2R3 =
1 · 3 · 3 · 1 · 3 · 3

3 · 3
= 9, (4.102)

as we already had in the other resolution models on a factorized A3
2 lattice.
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Conclusion

5.1 Summary

We considered the six target space extra dimensions of superstring theory
to be compactified on an orbifold or rather a smooth Calabi-Yau resolution
space thereof. Such a resolution space can either be obtained using toric
geometry (described in chapter 3, furthermore in [9], [12], [16]) or by means
of a Gauged Linear Sigma Model (GLSM) [7]. In particular, we focussed
on GLSM resolutions of the T 6/Z3 orbifold. We considered the underlying
six-torus to be factorizable as T 6 = T 2×T 2×T 2. As we knew from [7], such
six-tori T 6 can be described as the intersection set of three elliptic curves
in a toric variety X (X = P2 × P2 × P2), one curve for each two-torus.
In a GLSM setting, the hypersurface equations of these elliptic curves can
be recovered as the roots of the derivatives of a superpotential Wtorus with
respect to the scalar components of some superfields Ca (the so-called Fca-
term constraints).

By introduction of exceptional coordinates x at appropriate places and
a gauge fixing of their phases (if they are nonzero), we got back the symme-
try actions of the orbifold of the resolution model we chose. We saw that
different resolution models in general lead to different symmetries acting in
the orbifold. In detail, there are free symmetry actions, called 3-volutions
αa, that are not present in every resolution model.

This had important conseuqences on how one has to define the equations
of the complex codimension 1 hypersurfaces in T 6/Z3 called divisors, because
each divisor has to be invariant under all symmetry actions the orbifold
possesses. As we computed the intersection numbers of three such divisors
in each resolution model anew, we observed that they do not depend on the
resolution model chosen.

In contrast, using the so-called minimal fully resolvable model, we saw
that the intersection numbers may change varying the FI-parameters of the
resolution model from one specific interval to another.
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Furthermore, we saw in section 4.4 that there are resolution models that
lead to non-factorized torus lattices, i.e. we do not have a six-torus that is
writeable as T 6 = T 2 × T 2 × T 2 anymore. In such resolution models, the
usual GLSM fashion we used to compute intersection numbers breaks down.
This seems to be in correlation with the fact that the Weierstraß mapping
described in section 2.1.1 can only be generalized to six-tori that can be
factorized as T 6 = T 2×T 2×T 2, which is not the case in 4.4. Anyway, using
another reasoning, it was possible to compute an intersection number in a
rather extensive way without using any GLSM methods.

5.2 Outlook

We were only able to compute intersection numbers in a GLSM way using
resolution models that lead to factorized six-tori. A consistent way to com-
pute intersection numbers even for non-factorized orbifold resolution models
has still to be worked out. The key point to this may eventually be the de-
scription of the six-torus as elliptic curves in the space X = P2 × P2 × P2,
which is only valid for factorized six-tori. Perhaps one could find a similar
description even for non-factorized six-tori which would allow to compute
intersection numbers in the same algebraic way as for resolution models with
factorized torus lattices.

Furthermore, it is an open task to give a strictly mathematical derivation
of the equivalence relations between divisors in toroidal orbifolds. It would
be very helpful to have a reliable standard procedure at hand that gives such
equivalence relations for each orbifold in each resolution model.

Clearly, it is possible to extend the discussed GLSM methods to compute
intersection numbers to other orbifolds. In a minimal fully resolvable model,
it would be realizable to give intersection numbers in resolution phases that
are beyond the orbifold and blow-up regime, as it was done in section 4.2.2
for T 6/Z3.



Appendix A

Intersection numbers -
summary

We give a compact summary of the intersection numbers found in various
phases in the minimal fully resolvable model, section 4.2.2. Unlisted inter-
sections vanish.

a, b < 0: The non-geometric regime

There are no nontrivial divisor intersections.

b < 0 < a: The orbifold phase

R1R2R3 = 9, R1R2D3n3 = 3, (A.1)

R1D2n2D3n3 = 1, D1n1D2n2D3n3 = 1.

0 < b < a: Blow-up phase I

R1R2R3 = 9, R1R2D3n3 = 3,

R1D2n2D3n3 = 1, D1n1D2n2D3n3 = nonex., (A.2)

D1n1D2n2E = 1, DanaE
2 = −3, E3 = 9.

0 < a < b < 2a: Blow-up phase II

R1R2R3 = 9, R1R2D3n3 = 3,

R1R2E = 0, R1D2n2E = 3, (A.3)

DanaE
2 = −3, R1E

2 = 0, E3 = 9.
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0 < 2a < b < 3a: The critical blow-up phase, c1, c2 6= 0, c3 = 0

R3 = 1, D3n3 = 1. (A.4)

0 < 2a < b < 3a: The critical blow-up phase, ca = 0 ∀a = 1, 2, 3.

R1R2R3 = 9, R1R2D3n3 = 3,

R1R2E = 0, R1D2n2E = 3, (A.5)

DanaE
2 = −3, R1E

2 = 0, E3 = 9.

0 < 3a < b: The over-blow-up phase, ca 6= 0 ∀a = 1, 2, 3.

There are no nontrivial divisor intersections.

0 < 3a < b: The over-blow-up phase, c1, c2 6= 0, c3 = 0

R3 = 1, D3n3 = 1. (A.6)



Bibliography

[1] P. Vaudrevange: ”Grand Unification in the Heterotic
Brane World”, 0812.3503v1, 2008

[2] P. Shukla: ”Topics In Large Volume Swiss-Cheese Com-
pactification Geometries”, 1105.0365v2, 2011

[3] L. Dixon, J.A. Harvey, C. Vafa and E. Witten: ”Strings
on orbifolds”, Nucl.Phys. B261 (1985) 678-686.

[4] K. Becker, M. Becker and J. Schwarz: ”String theory
and M-theory - a modern introduction”, Cambridge Univ.
Press, Cambridge, 2007

[5] M. Green, J. Schwarz and E. Witten: ”Superstring theory
volume 2 - Loop amplitudes, anomalies and phenomenol-
ogy”, Camebridge Univ. Press, Cambridge, 2009

[6] S. Schmitt and H.G. Zimmer: ”Elliptic curves”, Walter
de Gruyter, Berlin, 2003

[7] M. Blaszczyk, S. Groot Nibbelink and F. Ruehle:
”Gauged Linear Sigma Models for toroidal orbifold re-
solutions”, [hep-th/1111.5852v1], 2011

[8] E. Witten: ”Phases of N = 2 theories in two dimensions”,
[hep-th/9301042v3], 1993
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